MATHEMATICS

Chapter 7: Congruence of Triangle

Congruence ofTriangles

1. Two figures having exactly same shape and size are said to be congruent.
2. Two plane figures are congruent, if each one when superimposed on the other, covers the other exactly.
3. Congruence of some geometrical figures:
i. Two line segments are congruent if they have the same length.
ii. Two angles are congruent if they have the same measure.
iii. Two squares are congruent if they have the same side length.
iv. Two rectangles are congruent if they have the same length and same breadth.
v. Two circles are congruent if they have the same radius.
4. Two triangles are said to be congruent, if pairs of corresponding sides and the corresponding angles are equal.

If $\triangle A B C$ and $\triangle P Q R$ are congruent, then we write it as $\triangle A B C \cong \triangle P Q R$.
5. The congruency of $\triangle A B C$ and $\triangle P Q R$ under the matching $\triangle A B C \leftrightarrow \triangle P Q R$ is written as $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$.

This means the vertices A, B, C are matched with the vertices P, Q, R respectively.
6. SSS congruence condition: If three sides of a triangle are equal to the three sides of another triangle, then the two triangles are congruent.
7. SAS congruence condition: If two sides and the included angle of one triangle are respectively equal to the two sides and the included angle of another triangle, then the two triangles are congruent.
8. ASA congruence condition: If two angles and the included side of one triangle are respectively equal to the two angles and the included side of another triangle, then the two triangles are congruent.
9. RHS congruence condition: If the hypotenuse and a side of one right angled triangle are equal to the hypotenuse and a side of another right-angled triangle, then two triangles are congruent.
10. Two congruent figures are equal in area but two figures having the same area need not be congruent.

Congruent Figures

Congruent figures are exactly equal in size and shape.
In Geometry, congruence is a term used to define two objects that have same dimensions and shape. Moreover, if one shape can be exactly like the other on turning, flipping and/or sliding it, then the two shapes are said to be congruent to each other. So two congruent
figures drawn on a piece of paper can be cut out and placed over one another to match up perfectly. When we say a figure A is congruent to a figure B, symbolically it can be written as figure $A \cong$ figure B. In this article, we will discuss congruence of plane figures and line segments and congruent angles.

Congruence of Plane Figures

You are given two plane figures. Using the method of superposition, here are the steps to find whether they are congruent to each other or not:

Congruent Figures

- Trace a copy of figure 1 using a tracing paper.
- Cut it out of the paper and place it over figure 2.
- You may slide or move or even turn over the paper. If they cover each other completely, they are congruent. We write figure $1 \cong$ figure 2 .

Congruence Among Line Segments

Two line segments are said to be congruent to each other if they have equal lengths. They may or may not align at the same angle with an axis or position in plane. To find whether one line segment is congruent to the other or not, we use the same method of superposition as discussed above. Thus if the two ends of the two line segments lie on one another, they are congruent.

Congruent Line Segments

Congruent Angles

If two angles have the same measure in degrees, they are congruent angles. The angles may or may not lie in the same position or orientation on plane. The method of superposition (as described above) can be used to check if given angles are congruent angles or not.

Congruent Angles
Thus, $\angle P Q R \cong \angle A B C$ because the two angles measure 40 degrees. It is to be noted here that the length of $B C$ is not equal to the length of $Q R$. But congruence of angles does not depend on the length of the arms of the angles; it depends on the measures of the angles only. Thus, $\angle P Q R$ and $\angle A B C$ are congruent angles.

Congruent Triangles

If all the sides and angles of a triangle are equal to the corresponding sides and angles of another triangle, then both the triangles are said to be congruent.

The meaning of congruent in Maths is addressed to those figures and shapes that can be repositioned or flipped to coincide with the other shapes. These shapes can be reflected to coincide with similar shapes.

Two shapes are congruent if they have the same shape and size. We can also say if two shapes are congruent, then the mirror image of one shape is same as the other.

In the above figure, $\triangle A B C$ and $\triangle P Q R$ are congruent triangles. This means,
Vertices: A and P, B and Q, and C and R are the same.
Sides: $A B=P Q, Q R=B C$ and $A C=P R$;
Angles: $\angle A=\angle P, \angle B=\angle Q$, and $\angle C=\angle R$.
Congruent triangles are triangles having corresponding sides and angles to be equal.

Congruence is denoted by the symbol " \cong ". They have the same area and the same perimeter.

CPCT Full Form

CPCT is the term we come across when we learn about the congruent triangle. CPCT means "Corresponding Parts of Congruent Triangles". As we know that the corresponding parts of congruent triangles are equal. While dealing with the concepts related to triangles and solving questions, we often make use of the abbreviation cpct in short words instead of full form.

CPCT Rules in Maths

The full form of CPCT is Corresponding parts of Congruent triangles. Congruence can be predicted without actually measuring the sides and angles of a triangle. Different rules of congruency are as follows.

SSS (Side-Side-Side)
SAS (Side-Angle-Side)
ASA (Angle-Side-Angle)
AAS (Angle-Angle-Side)
RHS (Right angle-Hypotenuse-Side)

Criteria for Congruency

SSS Criteria for Congruency

If under a given correspondence, the three sides of one triangle are equal to the three corresponding sides of another triangle, then the triangles are congruent.

Theorem: In two triangles, if the three sides of one triangle are equal to the corresponding three sides (SSS) of the other triangle, then the two triangles are congruent.

SAS Criteria for Congruency

If under a correspondence, two sides and the angle included between them of a triangle are equal to two corresponding sides and the angle included between them of another triangle, then the triangles are congruent.

ASA Criteria for Congruency

If under a correspondence, two angles and the included side of a triangle are equal to two corresponding angles and the included side of another triangle, then the triangles are congruent.

AAS Criteria for Congruency

AAS Rule: Triangles are congruent if two pairs of corresponding angles and a pair of opposite sides are equal in both triangles.

Why SSA and AAA congruency rules are not valid?
Two triangles with equal corresponding angles need not be congruent. In such a correspondence, one of them can be an enlarged copy of the other. Therefore, AAA congruency is not valid.

If two triangles have two congruent sides and a congruent non included angle, then triangles are not necessarily congruent. Therefore, SSA congruency is not valid.

RHS Criteria for Congruency

If under a correspondence, the hypotenuse and one side of a right-angled triangle are respectively equal to the hypotenuse and one side of another right-angled triangle, then the triangles are congruent.

Theorem: In two right-angled triangles, if the length of the hypotenuse and one side of one triangle, is equal to the length of the hypotenuse and corresponding side of the other triangle, then the two triangles are congruent.

Criteria for Congruency

Criteria for Congruency of two triangles are:
(i) SSS Rule
(ii) SAS Rule
(iii) ASA Rule
(iv) RHS Rule

Class: 7th mathematics Chapter-7 : Congruence of Triangles

Important Questions

Multiple Choice Questions:

Question 1. An angle is of 50° then its congruent angle is of:
(a) 40°
(b) 60°
(c) 50°
(d) None of these

Question 2. Given two triangles are congruent then we can write:

(a) $\triangle \mathrm{ABC} \equiv \triangle \mathrm{PQR}$
(b) $\triangle \mathrm{ABC} \equiv \triangle \mathrm{RPQ}$
(c) $\triangle A B C \equiv \triangle Q R P$
(d) none of these

Question 3. In the given figure, lengths of the sides of the triangles are given. Which pair of triangle are congruent?

(a) $\triangle A B C \equiv \triangle P Q R$
(b) $\triangle B C A \equiv \triangle P Q R$
(c) $\triangle A B C \equiv \triangle Q R P$
(d) none of these

Question 4. Are the following triangles congruent?

(a) yes
(b) no
(c) none of these

Question 5. Are the following triangles congruent?

(a) yes
(b) no
(c) none of these

Question 6. In the given figure, say congruency of two triangles.

(a) $\triangle A O C \cup \triangle B O D$
(b) $\triangle A O C \neq \triangle B O D$
(c) $\triangle \mathrm{AOC} \cup \triangle O B D$
(d) none of these

Question 7. Given triangles are congruent, then what is the measurement of x ?

(a) 3
(b) 4
(c) 5
(d) none of these

Question 8. Given below are measurements of some parts of two triangles. Write the result in symbolic form.

In $\triangle A B C, \angle B=90^{\circ}, A C 8 \mathrm{~cm} A B=3 \mathrm{~cm}$ and
$\triangle P Q R, \angle P=90^{\circ}, P R=3 \mathrm{~cm} Q R=8 \mathrm{~cm}$
(a) $\triangle \mathrm{ABC} \equiv \triangle \mathrm{RPQ}$
(b) $\triangle A B C \equiv \triangle P Q R$
(c) $\triangle A B C \equiv \triangle R P Q$
(d) none of these

Question 9. Given below are measurements of some parts of two triangles. Write the result in symbolic form if they are congruent.

In $\triangle A B C$,
$\angle A=90^{\circ}, A C=5 \mathrm{~cm}, B C=9 \mathrm{~cm}$
In APQR,
$\angle P=90^{\circ}, P R=3 \mathrm{~cm} Q R=8 \mathrm{~cm}$
(a) are congruent
(b) are not congruent

Question 10. $\triangle A B C$ and $\triangle P Q R$ are congruent under the correspondence: $A B C \leftrightarrow R P Q$, then the part of $\triangle A B C$ that correspond to $P Q$ is
(a) AC
(b) $A B$
(c) $B C$
(d) None of These

Question 11. $\triangle A B C$ is right triangle in which $\angle A=90^{\circ}$ and $A B=A C$. The values of $\angle B$ and $\angle C$ will be
(a) $\angle B=\angle C=30^{\circ}$
(b) $\angle B=\angle C=50^{\circ}$
(c) $\angle B=\angle C=45^{\circ}$
(d) $\angle B=\angle C=60^{\circ}$

Question 12. Two students drew a line segment each. What is the condition for them to be congruent?
(a) They should be drawn with a scale.
(b) They should be drawn on the same sheet of paper.
(c) They should have different lengths.
(d) They should have the same length.

Question 13. In the quadrilateral $A B C D, A C=A D$ and $A B$ bisect $\angle A$ and $\triangle A B C \cong \triangle A B D$. The relation between $B C$ and $B D$ is

(a) $B C<B D$
(b) $B C>B D$
(c) $B C=B D$
(d) None of these

Question 14. A triangle in which all three sides are of equal lengths is called
\qquad .
(a) Isosceles
(b) Equilateral
(c) Scalene
(d) None of these

Question 15. In $\triangle A B C$ and $\triangle P Q R, A B=4 \mathrm{~cm}, B C=5 \mathrm{~cm}, A C=6 \mathrm{~cm}$ and $P Q=4 \mathrm{~cm}$. $Q R$ $=5 \mathrm{~cm}$. $P R=6 \mathrm{~cm}$. then which of the following is true?
(a) $\triangle A B C \cong \triangle Q R P$
(b) $\triangle A B C \cong \triangle P Q R$
(c) $\triangle A B C \cong \triangle R Q P$
(d) None of these

Very Short Questions:

1. In the given figure, name
(a) the side opposite to vertex A
(b) the vertex opposite A to side $A B$
(c) the angle opposite to side AC
(d) the angle made by the sides CB and CA

2. Examine whether the given triangles are congruent or not.
3. In the given congruent triangles under $A S A$, find the value of x and $y, \triangle P Q R=$ Δ STU.

4. In the following figure, show that $\triangle P S Q=\triangle P S R$.

5. Can two equilateral triangles always be congruent? Give reasons.
6. In the given figure, $A P=B Q, P R=Q S$. Show that $\triangle A P S=\triangle B Q R$

7. Without drawing the figures of the triangles, write all six pairs of equal measures in each of the following pairs of congruent triangles.
(i) $\triangle \mathrm{ABC}=\mathrm{ADEF}$
(ii) $\triangle X Y Z=\triangle M L N$
8. Lengths of two sides of an isosceles triangle are 5 cm and 8 cm , find the perimeter of the triangle.

Short Questions:

1. Write the rule of congruence in the following pairs of congruent triangles.

(ii)
2. In the given figure, state the rule of congruence followed by congruent triangles LMN and ONM.

3. In the given figure, PQR is a triangle in which $P Q=P R$. $Q M$ and $R N$ are the medians of the triangle. Prove that
(i) $\triangle N Q R=\triangle M R Q$
(ii) $\mathrm{QM}=\mathrm{RN}$
(iii) $\triangle \mathrm{PMQ}=\triangle \mathrm{PNR}$

4. In the given figure, $P Q=C B, P A=C R, \angle P=\angle C$. Is $\triangle Q P R=\triangle B C A$? If yes, state the criterion of congruence.

5. In the given figure, state whether $\triangle A B C=\triangle E O D$ or not. If yes, state the criterion of congruence.

6. In the given figure, $P Q|\mid R S$ and $P Q=R S$. Prove that $\triangle P U Q=\triangle S U R$.

Long Questions:

1. In the given figure $\triangle \mathrm{BAC}=\triangle \mathrm{QRP}$ by SAS criterion of congruence. Find the value of x and y.

2. Observe the figure and state the three pairs of equal parts in triangles $A B C$ and DCB.
(i) Is $\triangle A B C=\triangle D C B$? Why?
(ii) Is $A B=D C$? Why?
(iii) Is $A C=D B$? Why?

3. In the given figure, $\triangle \mathrm{QPS}=\triangle \mathrm{SRQ}$. Find each value.
(a) x
(b) $\angle P Q S$
(c) $\angle P S R$

4. In $\triangle A B C$, medians $B D$ and $C E$ are equal and intersect each other at O. Prove that $\triangle A B C$ is an isosceles triangle.

5. Prove that the lengths of altitudes drawn to equal sides of an isosceles triangle are also equal.
(i) $\angle T R Q=\angle S Q R$?
(ii) If $\angle T R Q=30^{\circ}$, find the base angles of the $\triangle P Q R$.
(iii) Is $\triangle P Q R$ an equilateral triangle?

ANSWER KEY -

Multiple Choice Questions:

1. (c) 50°
2. (b) $\triangle A B C \equiv \triangle R P Q$
3. (a) $\triangle A B C \equiv \triangle P Q R$
4. (b) no
5. (b) no
6. (a) $\triangle A O C \cup \triangle B O D$
7. (c) 5
8. (a) $\triangle A B C \equiv \triangle R P Q$
9. (b) are not congruent
10. (c) $B C$
11. (c) $\angle B=\angle C=45^{\circ}$
12. (d) They should have the same length.
13. (c) $B C=B D$
14. (b) Equilateral
15. (b) $\triangle A B C \cong \triangle P Q R$

Very Short Answer:

1. (a) The side opposite to vertex A is $B C$.
(b) The vertex opposite to side $A B$ is C.
(c) The angle opposite to side $A B$ is $\angle A C B$.
(d) The angle made by the sides CB and CA is $\angle A C B$.
2. Here,
$\mathrm{AB}=\mathrm{DE}=3 \mathrm{~cm}$
$B C=D F=3.5 \mathrm{~cm}$
$\mathrm{AC}=\mathrm{EF}=4.5 \mathrm{~cm}$
$\triangle \mathrm{ABC}=\triangle \mathrm{EDF}$ (By SSS rule)

So, $\triangle A B C$ and $\triangle E D F$ are congruent.
3. Given: $\triangle P Q R=\triangle S T U$ (By ASA rule)
$\angle Q=\angle T=60^{\circ}$ (given)
$\overline{\mathrm{QR}}=\overline{\mathrm{TU}}=4 \mathrm{~cm}$ (given)
$\angle x=30^{\circ}$ (for ASA rule)
Now in \triangle STU,
$\angle \mathrm{S}+\angle \mathrm{T}+\angle \mathrm{U}=180^{\circ}$ (Angle sum property)
$\angle y+60^{\circ}+\angle x=180^{\circ}$
$\angle y+60^{\circ}+30^{\circ}=180^{\circ}$
$\angle y+90^{\circ}=180^{\circ}$
$\angle y=180^{\circ}-90^{\circ}=90^{\circ}$

Hence, $x=30^{\circ}$ and $y=90^{\circ}$.
4. In $\triangle P S Q$ and $\triangle P S R$

$$
\begin{aligned}
& \overline{\mathrm{PQ}}=\overline{\mathrm{PR}}=6.5 \mathrm{~cm} \text { (Given) } \\
& \overline{\mathrm{PS}}=\overline{\mathrm{PS}} \text { (Common) } \\
& \angle \mathrm{PSQ}=\angle \mathrm{PSR}=90^{\circ} \text { (Given) } \\
& \triangle \mathrm{PSQ}=\triangle \mathrm{PSR} \text { (By RHS rule) }
\end{aligned}
$$

5. No, any two equilateral triangles are not always congruent.

Reason: Each angle of an equilateral triangle is 60° but their corresponding sides cannot always be the same.
6. In $\triangle A P S$ and $\triangle B Q R$
$A P=B Q$ (Given)
$\mathrm{PR}=\mathrm{QS}$ (Given)
$P R+R S=Q S+R S$ (Adding RS to both sides)
$P S=Q R$
$\angle A P S=\angle B Q R=90^{\circ}$ (Given)
$\triangle A P S=\triangle B Q R$ (by SAS rule)
7. (i) Given: $\triangle A B C=\triangle D E F$

Here $A B=D E$
$B C=E F$
$\mathrm{AC}=\mathrm{DF}$
$\angle A=\angle D, \angle B=\angle E$ and $\angle C=\angle F$
(ii) Given $\triangle X Y Z=\triangle M L N$

Here XY = ML
$Y Z=L N$
$X Z=M N$
$\angle \mathrm{X}=\angle \mathrm{M}, \angle \mathrm{Y}=\angle \mathrm{L}$ and $\angle \mathrm{Z}=\angle \mathrm{N}$
8. Since the lengths of any two sides of an isosceles triangle are equal, then

Case I: The three sides of the triangle are $5 \mathrm{~cm}, 5 \mathrm{~cm}$ and 8 cm .
Perimeter of the triangle $=5 \mathrm{~cm}+5 \mathrm{~cm}+8 \mathrm{~cm}=18 \mathrm{~cm}$
Case II: The three sides of the triangle are $5 \mathrm{~cm}, 8 \mathrm{~cm}$ and 8 cm .
Perimeter of the triangle $=5 \mathrm{~cm}+8 \mathrm{~cm}+8 \mathrm{~cm}=21 \mathrm{~cm}$
Hence, the required perimeter is 18 cm or 21 cm .

Short Answer :

1. (i) Here, $A B=S T=3 \mathrm{~cm}$
$B C=T U=4.5 \mathrm{~cm}$
$\angle A B C=\angle S T U=110^{\circ}$
$\triangle \mathrm{ABC}=\triangle \mathrm{STU}$ (By SAS rule)
(ii) Here $\angle P Q R=\angle M N L=90^{\circ}$
hypt. PR = hypt. ML
$Q R=N L=3 \mathrm{~cm}$
$\triangle \mathrm{PQR}=\triangle \mathrm{MNL}$ (By RHS rule)
2. In $\triangle L M N$ and $\triangle O N M$
$L M=O N$
LN = OM
$\mathrm{MN}=\mathrm{NM}$
$\Delta \mathrm{LMN}=\Delta \mathrm{ONM}$
3. $\triangle P Q R$ is an isosceles triangle. $[\because P Q=P R]$
$\Rightarrow \frac{1}{2} \mathrm{PQ}=\frac{1}{2} \mathrm{PR}$
$\Rightarrow N Q=M R$ and $P N=P M$
(i) In $\triangle N Q R$ and $\triangle M R Q$
$N Q=M R$ (Half of equal sides)
$\angle N Q R=\angle M R Q$ (Angles opposite to equal sides)
$Q R=R Q$ (Common)
$\triangle N Q R=\triangle M R Q$ (By SAS rule)
(ii) $\mathrm{QM}=\mathrm{RN}$ (Congruent parts of congruent triangles)
(iii) In $\triangle \mathrm{PMQ}$ and $\triangle \mathrm{PNR}$
$\mathrm{PN}=\mathrm{PM}$ (Half of equal sides)
$P R=P Q$ (Given)
$\angle \mathrm{P}=\angle \mathrm{P}$ (Common)
$\Delta \mathrm{PMQ}=\triangle \mathrm{PNR}$ (By SAS rule)
4. $P Q=C B, P A=C R$
and $\angle P=\angle C$
In $\triangle \mathrm{QPR}$ and $\triangle \mathrm{BCA}$,
$\mathrm{PQ}=\mathrm{CB}$ (Given)
$\angle \mathrm{QPR}=\angle \mathrm{BCA}$ (Given)
```
PA \(=C R\) (Given)
\(P A+A R=C R+A R\) (Adding AR to both sides)
or \(\mathrm{PR}=\mathrm{CA}\)
\(\triangle Q P R=\triangle B C A\) (By SAS rule)
```

5. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EOD}$
$A B=O E$
$\angle \mathrm{ABC}=\angle \mathrm{EOD}=90^{\circ}$
$A C=E D$
$\triangle \mathrm{ABC}=\triangle \mathrm{EOD}$
Hence, $\triangle \mathrm{ABC}=\triangle \mathrm{EOD}$
RHS is the criterion of congruence.
6. In $\triangle P U Q$ and $\triangle S U R$

$$
\begin{aligned}
& \mathrm{PQ}=\mathrm{SR}=4 \mathrm{~cm} \\
& \angle \mathrm{CPQ}=\angle \mathrm{USR} \text { (Alternate interior angles) } \\
& \angle \mathrm{PQU}=\angle \mathrm{SRU} \text { (Alternate interior angles) } \\
& \triangle \mathrm{PUQ}=\triangle \mathrm{SUR} \text { (By ASA rule) }
\end{aligned}
$$

Long Answer:

1. Given: $\triangle B A C=\triangle Q R P$ (By SAS rule)

So, $B A=Q R$
$\Rightarrow 3 x+10=5 y+15$
$\angle B A C=\angle Q R P$
$\Rightarrow 2 \mathrm{x}+15^{\circ}=5 \mathrm{x}-60^{\circ}$
From eq. (ii), we have
$2 x+15=5 x-60$
$\Rightarrow 2 x-5 x=-15-60$
$\Rightarrow-3 x=-75$
$\Rightarrow \mathrm{x}=25$
From eq. (i), we have
$3 x+10=5 y+15$
$\Rightarrow 3 \times 25+10=5 y+15$
$\Rightarrow 75+10=5 y+15$
$\Rightarrow 85=5 y+15$

$$
\begin{aligned}
& \Rightarrow 85-15=5 y \\
& \Rightarrow 70=5 y \\
& \Rightarrow y=14
\end{aligned}
$$

Hence, the required values of x and y are 25 and 14 respectively.
2. (i) In $\triangle A B C$ and $\triangle D C B$
$\angle \mathrm{ABC}=\angle \mathrm{DCB}=70^{\circ}\left(40^{\circ}+30^{\circ}=70^{\circ}\right)$ (Given)
$\angle A C B=\angle D C B=30^{\circ}($ Given $)$
$\mathrm{BC}=\mathrm{CB}$ (Common)
$\triangle \mathrm{ABC}=\triangle \mathrm{DCB}$ (By ASA rule)
(ii) Yes,
$A B=D C$ (Congruent parts of congruent triangles)
(iii) Yes,
$\mathrm{AC}=\mathrm{DB}$ (Congruent parts of congruent triangles)
3. (a) $\triangle \mathrm{QPS}=\triangle \mathrm{SRQ}$
$\angle \mathrm{QPS}=\angle \mathrm{SRQ}$ (Congruent part of congruent triangles)
$106=2 x+12$
$\Rightarrow 106-12=2 x$
$\Rightarrow 94=2 x$
$\Rightarrow \mathrm{x}=47$
$\angle \mathrm{QRS}=2 \times 47+12=94+12=106^{\circ}$
So, PQRS is a parallelogram.
$\angle Q S R=180^{\circ}-\left(42^{\circ}+106^{\circ}\right)=180^{\circ}-148^{\circ}=32^{\circ}$
(b) $\angle P Q S=32^{\circ}$ (alternate interior angles)
(c) $\angle P S Q=180^{\circ}-(\angle Q P S+\angle P Q S)=180^{\circ}-\left(106^{\circ}+32^{\circ}\right)=180^{\circ}-138^{\circ}=42^{\circ}$
$\angle \mathrm{PSR}=32^{\circ}+42^{\circ}=74^{\circ}$
4. We know that the medians of a triangle intersect each other in the ratio $2: 1$.
$B D=C E$ (Given)
$\frac{2}{3} \mathrm{BD}=\frac{2}{3} \mathrm{CE}$
$\Rightarrow O B=O C$
$\frac{1}{3} \mathrm{BD}=\frac{1}{3} \mathrm{CE}$
$\Rightarrow O E=O D$

In $\triangle \mathrm{BOE}$ and $\triangle \mathrm{COD}$,
$O B=O C$
$O E=O D$
$\angle B O E=\angle C O D$ (Vertically opposite angles)
$\triangle \mathrm{BOE}=\triangle \mathrm{COD}$ (By SAS rule)
$\mathrm{BE}=\mathrm{CD}$ (Congruent parts of congruent triangles)
$2 B E=2 C D$
$\Rightarrow A B=A C$
Hence $\triangle A B C$ is an isosceles triangle.
5. In $\triangle Q T R$ and $\triangle R S Q$
$\angle \mathrm{QTR}=\angle \mathrm{RSQ}=90^{\circ}$ (Given)
$\angle \mathrm{TQR}=\angle \mathrm{SRQ}$ (Base angle of an isosceles triangle)
$\angle Q R T=\angle R Q S$ (Remaining third angles)
$Q R=Q R$ (Common)
$\Delta \mathrm{QTR}=\Delta \mathrm{RSQ}$ (By ASA rule)
QS = RT (Congruent parts of congruent triangles)
Hence proved.
(i) $\angle \mathrm{TRQ}=\angle \mathrm{SQR}$ (Congruent parts of congruent triangles)
(ii) In $\triangle Q T R$,
$\angle T R Q=30^{\circ}$ (Given)
$\angle Q T R+\angle T Q R+\angle Q R T=180^{\circ}$ (Angle sum property)
$\Rightarrow 90^{\circ}+\angle \mathrm{TQR}+30^{\circ}=180^{\circ}$
$\Rightarrow 120^{\circ}+\angle T Q R=180^{\circ}$
$\Rightarrow \angle T Q R=180^{\circ}-120^{\circ}=60^{\circ}$
$\Rightarrow \angle \mathrm{TQR}=\angle \mathrm{SRQ}=60^{\circ}$
Each base angle $=60^{\circ}$
(iii) In $\triangle P Q R$,
$\angle P+\angle Q+\angle R=180^{\circ}$ (Angle sum property)
$\Rightarrow \angle \mathrm{P}+60^{\circ}+60^{\circ}=180^{\circ}$ (From ii)
$\Rightarrow \angle P+120^{\circ}=180^{\circ}$
$\Rightarrow \angle P=180^{\circ}-120^{\circ}=60^{\circ}$
Hence, $\triangle P Q R$ is an equilateral triangle.

