MATHEMATICS

Chapter 9: Area of Parallelograms andTriangles

Area of Parallelograms andTriangles

Introduction to Planar region and Area

The part of the plane enclosed by a simple closed figure is called a planar region corresponding to that figure. The magnitude or measure of that planar region is called its area.

Congruent figures and their areas

- Two figures are called congruent, if they have the same shape and the same size.
- If two figures A and B are congruent, they must have equal areas.
- Two figures having equal areas need not be congruent. In the figure,

Area of rectangle $A B C D=16 \times 4=64 \mathrm{~cm}^{2}$
Area of square $\operatorname{PQRS}=8^{2}=64 \mathrm{~cm}^{2}$
Area of rectangle $A B C D=$ Area of square PQRS
But rectangle $A B C D$ and square PQRS are not congruent.

Area of a figure

Area of a figure is a number (in some unit) associated with the part of the plane enclosed by the figure.

Area of the planar region

If a planar region formed by a figure T is made up of two non-overlapping planar regions formed by figures P and Q , then $\operatorname{ar}(\mathrm{T})=\operatorname{ar}(\mathrm{P})+\operatorname{ar}(\mathrm{Q})$.

Figure on the same base and between the same parallels

- Two figures are said to be on the same base and between the same parallels if they have a common base (side) and the vertices (or the vertex) opposite to the common base of
each figure lie on a line parallel to the base.

- Please note that out of the two parallels, one must be the line containing the common base.

Areas of figures on the same base and between the same parallels

- Parallelograms on the same base and between the same parallels are equal in area.

In the figure, parallelograms PQCD and ARCD lie on the same base CD and between same parallels CD and PR. So, $\operatorname{ar}(P Q C D)=\operatorname{ar}(A R C D)$.

- Area of a parallelogram is the product of its any side and the corresponding altitude.
- Parallelograms on the same base (or equal bases) and having equal areas lie between the same parallels.
- If a triangle and a parallelogram are on the same base and between the same parallels, then the area of the triangle is equal to half of the area of the parallelogram.

In the figure, triangle DEC and parallelogram ABCD are on the same $C D$ and between the same parallels $A B$ and $C D$.
Therefore, area of triangle $\operatorname{DEC}=1 / 2 \times$ area of parallelogram ABCD .

- Two triangles on the same base (or equal base) and between the same parallel are equal inarea.

In the figure, triangles $A B C$ and $P B C$ lie on the same base $B C$ and between same parallels $B C$ and $A P$.
Therefore, ar(triangle $A B C)=$ ar(triangle $P B C)$.

- Area of a triangle is half the product of its base (or any side) and the corresponding altitude (or height).

Important facts about triangles on the same base

- Two triangles with same base (or equal bases) and equal areas will have equal corresponding altitudes.
- Two triangles having the same base (or equal bases) and equal areas lie between the same parallels.
- A median of a triangle divides it into triangles of equal areas.

The area represents the amount of planar surface being covered by a closed geometric figure.

Figures on the Common Base and Between the Same Parallels

Two shapes are stated to be on the common base and between the same parallels if:

- They have a common side.
- The sides parallel to the common base and vertices opposite the common side lie on the same straight line parallel to the base.

For example Parallelogram ABCD, Rectangle ABEF and Triangles ABP and ABQ

Area of a parallelogram

The area of a parallelogram is the region bounded by the parallelogram in a given two-dimension space. To recall, a parallelogram is a special type of quadrilateral which has four sides and the pair of opposite sides are parallel. In a parallelogram, the opposite sides are of equal length and
opposite angles are of equal measures. Since the rectangle and the parallelogram have similar properties, the area of the rectangle is equal to the area of a parallelogram.

Parallelogram

Area of Parallelogram Formula

To find the area of the parallelogram, multiply the base of the perpendicular by its height. It should be noted that the base and the height of the parallelogram are perpendicular to each other, whereas the lateral side of the parallelogram is not perpendicular to the base. Thus, a dotted line is drawn to represent the height.

Area of a parallelogram $=b \times h$
Where ' b ' is the base and ' h ' is the corresponding altitude (Height).

Area of a triangle

AREA OF TRIANGLE

Area $=\frac{1}{2} \times$ base \times perpendicular height

Area of a Triangle Formula

The area of the triangle is given by the formula mentioned below:
Area of a Triangle $=A=1 / 2(b \times h)$ square units
where b and h are the base and height of the triangle, respectively.
Now, let's see how to calculate the area of a triangle using the given formula. The area formulas for all the different types of triangles like an area of an equilateral triangle, right-angled triangle, an isosceles triangle are given below. Also, how to find the area of a triangle with 3 sides using Heron's formula with examples.

Area of a Right-Angled Triangle

A right-angled triangle, also called a right triangle has one angle at 90° and the other two acute angles sums to 90°. Therefore, the height of the triangle will be the length of the perpendicular side.

AREA OF A RIGHT ANGLED TRIANGLE

Area of a Right Triangle $=A=1 / 2 \times$ Base \times Height (Perpendicular distance)
From the above figure,
Area of triangle $\mathrm{ACB}=1 / 2 \mathrm{ab}$

Area of an Equilateral Triangle

An equilateral triangle is a triangle where all the sides are equal. The perpendicular drawn from the vertex of the triangle to the base divides the base into two equal parts. To calculate the area of the equilateral triangle, we have to know the measurement of its sides.

AREA OF AN EQUILATERAL TRIANGLE

Area of an Equilateral Triangle $=A=(V 3) / 4 \times$ side 2

Area of an Isosceles Triangle

An isosceles triangle has two of its sides equal and also the angles opposite the equal sides are equal.

AREA OF AN ISOSCELES TRIANGLE

Area of an Isosceles Triangle $=1 / 4 b v\left(4 a^{2}-b^{2}\right)$

Perimeter of a Triangle

The perimeter of a triangle is the distance covered around the triangle and is calculated by adding all three sides of a triangle.
The perimeter of a triangle $=P=(a+b+c)$ units
where a, b and c are the sides of the triangle.

Area of Triangle with Three Sides (Heron's Formula)

The area of a triangle with 3 sides of different measures can be found using Heron's formula. Heron's formula includes two important steps. The first step is to find the semi perimeter of a triangle by adding all the three sides of a triangle and dividing it by 2 . The next step is that, apply the semi-perimeter of triangle value in the main formula called "Heron's Formula" to find the area of a triangle.

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

where, s is semi-perimeter of the triangle $=s=(a+b+c) / 2$
We have seen that the area of special triangles could be obtained using the triangle formula. However, for a triangle with the sides being given, the calculation of height would not be simple. For the same reason, we rely on Heron's Formula to calculate the area of the triangles with unequal lengths.

Theorems

Parallelograms on the Common Base and Between the Same Parallels
Two parallelograms are said to be on the common/same base and between the same parallels if

- They have a common side.
- The sides parallel to the common side lie on the same straight line.

Theorem: Parallelograms that lie on the common base and between the same parallels are said
to have equal in area.
Here, ar (parallelogram $A B C D)=\operatorname{ar}($ parallelogram $A B E F)$
Triangles on the Common Base and Between the Same Parallels
Two triangles are said to be on the common base and between the same parallels if They have a common side.

The vertices opposite the common side lie on a straight line parallel to the common side.

Triangles $A B C$ and $A B D$
Theorem: Triangles that lie on the same or the common base and also between the same parallels are said to have an equal area.

Here, $\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A B D)$
Two Triangles Having the Common Base \& Equal Areas

If two triangles have equal bases and are equal in area, then their corresponding altitudes are equal.
A Parallelogram and a Triangle Between the Same parallels
A triangle and a parallelogram are said to be on the same base and between the same parallels if

- They have a common side.
- The vertices opposite the common side lie on a straight line parallel to the common side.

A triangle $A B C$ and a parallelogram $A B D E$

Theorem: If a triangle and a parallelogram are on the common base and between the same parallels, then the area of the triangle is equal to half the area of the parallelogram.

Here, $\operatorname{ar}(\triangle A B C)=(1 / 2)$ ar (parallelogram $A B D E)$

Class: 9th mathematics

Chapter- 9: Areas of Parallelograms and Triangles

Important Questions

Multiple Choice questions-

Question 1. What is the area of a parallelogram?
(a) $\frac{1}{2} \times$ Base \times Altitude
(b) Base \times Altitude
(c) $\frac{1}{4} \times$ Base \times Median
(d) Base \times Base

Question 2. $A E$ is a median to side $B C$ of triangle $A B C$. If area $(\triangle A B C)=24 \mathrm{~cm}$, then $\operatorname{area}(\triangle A B E)=$
(a) 8 cm
(b) 12 cm
(c) 16 cm
(d) 18 cm

Question 3. In the figure, $\angle P Q R=90^{\circ}, P S=R S, Q P=12 \mathrm{~cm}$ and $Q S=6.5 \mathrm{~cm}$. The area of $\triangle P Q R$ is

(a) $30 \mathrm{~cm}^{2}$
(b) $20 \mathrm{~cm}^{2}$
(c) $39 \mathrm{~cm}^{2}$
(d) $60 \mathrm{~cm}^{2}$

Question 4. $B C D$ is quadrilateral whose diagonal $A C$ divides it into two parts, equal in area, then $A B C D$
$A B C D$ is quadrilateral whose diagonal $A C$ divides it into two parts, equal in area, then $A B C D$
(a) Is a rectangles
(b) Is a parallelogram
(c) Is a rhombus
(d) Need not be any of (a), (b) or (c).

Question 5. In $\triangle P Q R$, if D and E are points on $P Q$ and $P R$ respectively such that $D E \|$ $Q R$, then ar (PQE) is equal to

(a) ar (PRD)
(b) ar (DQM)
(c) ar (PED)
(d) ar (DQR)

Question 6. If Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at 0 . Then,
(a) $\operatorname{ar}(A O D)=\operatorname{ar}(B O C)$
(b) ar (AOD) > ar (BOC)
(c) ar (AOD) < ar (BOC)
(d) None of the above

Question 7. For two figures to be on the same base and between the same parallels, one of the lines must be.
(a) Making an acute angle to the common base
(b) The line containing the common base
(c) Perpendicular to the common base
(d) Making an obtuse angle to the common base

Question 8. Two parallelograms are on equal bases and between the same parallels. The ratio of their areas is:
(a) $1: 3$
(b) $1: 2$
(c) $2: 1$
(d) $1: 1$

Question 9. If P and Q are any two points lying on the sides $D C$ and $A D$ respectively of a parallelogram $A B C D$, then:
(a) ar (APB) $>\operatorname{ar}($ BQC $)$
(b) ar (APB) < ar (BQC)
(c) $\operatorname{ar}(\mathrm{APB})=\operatorname{ar}(\mathrm{BQC})$
(d) None of the above

Question 10. A triangle and a rhombus are on the same base and between the same parallels. Then the ratio of area of triangle to that rhombus is:
(a) $1: 3$
(b) $1: 2$
(c) $1: 1$
(d) $1: 4$

Very Short:

1. Two parallelograms are on equal bases and between the same parallels. Find the ratio of their areas.
2. In $\triangle X Y Z, X A$ is a median on side $Y Z$. Find ratio of $\operatorname{ar}(\triangle X Y A): \operatorname{ar}(\triangle X Z A)$

3. $A B C D$ is a trapezium with parallel sides $A B=a c m$ and $D C=b c m$ (fig.). E and F are the mid-points of the non parallel sides. Find the ratio of $\operatorname{ar}(A B F E)$ and $\operatorname{ar}(E F C D)$.

4. $A B C D$ is a parallelogram and Q is any point on side $A D$. If $\operatorname{ar}(\triangle Q B C)=10 \mathrm{~cm} 2$, find $\operatorname{ar}(\triangle \mathrm{QAB})+\operatorname{ar}(\triangle \mathrm{QDC})$.

5. $W X Y Z$ is a parallelogram with $X P \perp W Z$ and $Z Q \perp W X$. If $W X=8 \mathrm{~cm}, X P=8 \mathrm{~cm}$ and $Z Q=2 \mathrm{~cm}$, find $Y X$.

6. In figure, $T R \perp P S, P Q \| T R$ and $P S \| Q R$. If $Q R=8 \mathrm{~cm}, P Q=3 \mathrm{~cm}$ and $S P=12 \mathrm{~cm}$, find $\operatorname{ar}(q u a d$. PQRS).

7. In the given figure, $A B C D$ is a parallelogram and L is the mid-point of $D C$. If $\operatorname{ar}($ quad. $A B C L)$ is 72 cm , then find $\operatorname{ar}(\triangle A D C)$.
8. In figure, $T R \perp P S, P Q| | T R$ and $P S|\mid Q R$. If $Q R=8 \mathrm{~cm}, P Q=3 \mathrm{~cm}$ and $S P=12 \mathrm{~cm}$, find ar (PQRS).

Short Questions:

1. $A B C D$ is a parallelogram and O is the point of intersection of its diagonals. If ar(A $A O D)=4 \mathrm{~cm} \backslash(2 \backslash)$ find area of parallelogram $A B C D$.

2. In the given figure of $\triangle X Y Z, X A$ is a median and $A B \| Y X$. Show that $Y B$ is also a median.

3. $A B C D$ is a trapezium. Diagonals $A C$ and $B D$ intersect each other at O. Find the ratio ar ($\triangle A O D): \operatorname{ar}(\triangle B O C)$.
4. $A B C D$ is a parallelogram and $B C$ is produced to a point Q such that $A D=C Q$ (fig.). If $A Q$ intersects $D C$ at P, show that $\operatorname{ar}(\triangle B P C)=\operatorname{ar}(\triangle D P Q)$.

5. In the figure, $P Q R S$ is a parallelogram with $P Q=8 \mathrm{~cm}$ and $\operatorname{ar}(\triangle P X Q)=32 \mathrm{~cm} 2$. Find the altitude of gm PQRS and hence its area.

6. In $\triangle A B C$. D and E are points on side $B C$ such that $C D=D E=E B$. If $\operatorname{ar}(\triangle A B C)=$ 27 cm , find $\operatorname{ar}(\triangle A D E)$

Long Questions:

1. EFGH is a parallelogram and U and T are points on sides EH and GF respectively. If $\operatorname{ar}(\Delta E H T)=16 \mathrm{~cm}$, find $\operatorname{ar}(\Delta G U F)$.

2. $A B C D$ is a parallelogram and P is any point in its interior. Show that: $\operatorname{ar}(\triangle \mathrm{APB})+\operatorname{ar}(\triangle \mathrm{CPD})=\operatorname{ar}(\triangle \mathrm{BPC})+\operatorname{ar}(\triangle \mathrm{APD})$

3. In the given figure, $A B C D$ is a square. Side $A B$ is produced to points P and Q in such a way that $P A=A B=B Q$. Prove that $D Q=C P$.

4. In the given figure, PQRS, SRNM and PQNM are parallelograms, Show that : $\operatorname{ar}(\triangle P S M)=\operatorname{ar}(\triangle Q R N)$.

5. Naveen was having a plot in the shape of a quadrilateral. He decided to donate some portion of it to construct a home for orphan girls. Further he decided to buy a land in lieu of his donated portion of his plot so as to form a triangle.
(i) Explain how this proposal will be implemented?
(ii) Which mathematical concept is used in it?
(iii) What values are depicted by Naveen?

Assertion and Reason Questions-

1. In these questions, a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.
a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
c) Assertion is correct statement but reason is wrong statement.
d) Assertion is wrong statement but reason is correct statement.

Assertion: The area of a parallelogram and a rectangle having a common base and between same parallels are equal.

Reason: Another name of a rectangle is a parallelogram.
2. In these questions, a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.
a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
c) Assertion is correct statement but reason is wrong statement.
d) Assertion is wrong statement but reason is correct statement.

Assertion: The parallelogram on the same and between the same parallel are equal in area.

Reason: The areas of parallelogram between the same parallels are equal

Answer Key:

MCQ:

1. (b) Base \times Altitude
2. (b) 12 cm
3. (c) $30 \mathrm{~cm}^{2}$
4. (d) Need not be any of (a), (b) or (c).
5. (a) ar (PRD)
6. (a) $\operatorname{ar}(A O D)=\operatorname{ar}(B O C)$
7. (b) The line containing the common base
8. (d) $1: 1$
9. (c) $\operatorname{ar}(\mathrm{APB})=\operatorname{ar}(\mathrm{BQC})$
10.(b) $1: 2$

Very Short Answer:

1. $1: 1[\because$ Two parallelograms on the equal bases and between the same parallels are equal in
area.]
2. Here, $X A$ is the median on side $Y Z$.
$\therefore Y A=A Z$
Draw XL \perp YZ

$$
\begin{aligned}
& \therefore \operatorname{ar}(\triangle \mathrm{XYA})=\frac{1}{2} \times \mathrm{YA} \times \mathrm{XL} \\
& \operatorname{ar}(\triangle \mathrm{XZA})= \\
&=\frac{1}{2} \times \mathrm{AZ} \times \mathrm{XL}
\end{aligned}
$$

Thus, $\operatorname{ar}(\triangle X Y A): \operatorname{ar}(\triangle X Z A)=\frac{1}{2} \times Y A \times X L: \frac{1}{2} \times A Z \times X L$

$$
=1: 1
$$

$[\because Y A=A Z]$
3.

Clearly, $\mathrm{EF}=\frac{\mathrm{AB}+\mathrm{DC}}{2}=\frac{a+b}{2}$
Let h be the height, then
ar (Trap. ABFE) : ar(Trap. EFCD)
$\Rightarrow \quad \frac{1}{2}\left[a+\left(\frac{a+b}{2}\right)\right] \times h: \frac{1}{2}\left[b+\left(\frac{a+b}{2}\right)\right] \times h$
$\Rightarrow \quad \frac{2 a+a+b}{2}: \frac{2 b+a+b}{2}$
$\Rightarrow \quad 3 a+b: 3 b+a$
4. Here, $\triangle Q B C$ and parallelogram $A B C D$ are on the same base $B C$ and lie between the same parallels $B C \| A D$.
$\therefore \operatorname{ar}(|\mid g m \mathrm{ABCD})=2 \operatorname{ar}(\triangle \mathrm{QBC}) \operatorname{ar}(\triangle \mathrm{QAB})+\operatorname{ar}(\triangle \mathrm{QDC})+\operatorname{ar}(\triangle \mathrm{QBC})=2 \operatorname{ar}(\triangle \mathrm{QBC})$
$\operatorname{ar}(\triangle \mathrm{QAB})+\operatorname{ar}(\triangle \mathrm{QDC})=\operatorname{ar}(\triangle \mathrm{QBC})$
Hence, $\operatorname{ar}(\triangle Q A B)+\operatorname{ar}(\triangle Q D C)=10 \mathrm{~cm}^{2}$

$$
[\because \operatorname{ar}(\triangle Q B C)=10 \mathrm{~cm} 2 \text { (given)] }
$$

5. $\operatorname{ar}(|\mid g m W X Y Z)=\operatorname{ar}(| | g m W X Y Z)$
$W X \times Z Q=W Z \times X P$
$8 \times 2=W Z \times 8$
$\Rightarrow W Z=2 \mathrm{~cm}$
Now, $\mathrm{YX}=\mathrm{WZ}=2 \mathrm{~cm}$
[\because opposite sides of parallelogram are equal]
6. Here,

PS || QR [given]
\therefore PQRS is a trapezium
Now, TR \perp PS and PQ || TR [given]
$\Rightarrow \mathrm{PQ} \perp \mathrm{PS}$
$\therefore P Q=T R=3 \mathrm{~cm}$ [given]
Now, $\operatorname{ar}($ quad. $P Q R S)=\frac{1}{2}(P S+Q R) \times P Q=\frac{1}{2}(12+8) \times 3=30 \mathrm{~cm}^{2}$
7. In ||gm ABCD, AC is the diagonal

$$
\therefore \quad \operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{ADC})=\frac{1}{2} \operatorname{ar}(\| \operatorname{gm} \mathrm{ABCD})
$$

In $\triangle \mathrm{ADC}, \mathrm{AL}$ is the median
$\therefore \quad \operatorname{ar}(\triangle \mathrm{ADL})=\operatorname{ar}(\triangle \mathrm{ACL})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ADC})=\frac{1}{4} \operatorname{ar}\left(\| \|^{\mathrm{mm}} \mathrm{ABCD}\right)$
Now, $\operatorname{ar}(q u a d . ~ A B C L)=\operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle A C L)=\frac{3}{4} \operatorname{ar}\left(\|\right.$ gm $\left.^{m B C D}\right)$

$$
72 \times \frac{4}{3}=\operatorname{ar}\left(\|\left.\right|^{\mathrm{sm}} \mathrm{ABCD}\right)
$$

\Rightarrow
\therefore $\operatorname{ar}\left(\|{ }^{\mathrm{gm}} \mathrm{ABCD}\right)=96 \mathrm{~cm}^{2}$

$$
\operatorname{ar}(\triangle \mathrm{ADC})=\frac{1}{2} \operatorname{ar}\left(\| \mathrm{sm}^{\mathrm{m}} \mathrm{ABCD}\right)=\frac{1}{2} \times 96=48 \mathrm{~cm}^{2}
$$

8. Here, PS \| QR
\therefore PQRS is a trapezium in which $P Q=3 \mathrm{~cm}, Q R=8 \mathrm{~cm}$ and $\mathrm{SP}=12 \mathrm{~cm}$
Now, TR I PS and PQ || TR
\therefore PQRT is a rectangle
$\left[\because \mathrm{PQ}||\mathrm{TR}, \mathrm{PT}|| \mathrm{QR}\right.$ and $\left.\angle \mathrm{PTR}=90^{\circ}\right]$
$\Rightarrow P Q=T R=3 \mathrm{~cm}$
Now, $\operatorname{ar}($ PQRS $)=\frac{1}{2}(P S+Q R) \times T R=\frac{1}{2}(12+8) \times 3=30 \mathrm{~cm}^{2}$.

Short Answer:

Ans: 1. Here, $A B C D$ is a parallelogram in which its diagonals $A C$ and $B D$ intersect each other in 0.
$\therefore \mathrm{O}$ is the mid-point of $A C$ as well as BD.
Now, in $\triangle A D B, A O$ is its median
$\therefore \operatorname{ar}(\triangle \mathrm{ADB})=2 \operatorname{ar}(\triangle \mathrm{AOD})$
[\because median divides a triangle into two triangles of equal areas]
So, $\operatorname{ar}(\triangle A D B)=2 \times 4=8 \mathrm{~cm}^{2}$
Now, $\triangle A D B$ and \|gm $A B C D$ lie on the same base $A B$ and lie between same parallels $A B$ and CD
$\therefore \operatorname{ar}(A B C D)=2 \operatorname{ar}(\triangle A D B)$.
$=2 \times 8$
$=16 \mathrm{~cm}^{2}$
Ans: 2. Here, in $\triangle X Y Z, A B| | Y X$ and $X A$ is a median.
$\therefore A$ is the mid-point of $Y Z$. Now, $A B$ is a line segment from mid-point of one side (YZ) and parallel to another side ($A B|\mid Y X$), therefore, it bisects the third side $X Z$.
$\Rightarrow B$ is the mid-point of $X Z$.
Hence, $Y B$ is also a median of $\triangle X Y Z$.

Ans: 3.

Here, $A B C D$ is a trapezium in which diagonals $A C$ and $B D$ intersect each other at O. $\triangle A D C$ and $A B C D$ are on the same base $D C$ and between the same 'parallels i.e., $A B|\mid D C$.
$\therefore \operatorname{ar}(\triangle \mathrm{ADC})=\operatorname{ar}(\triangle \mathrm{BCD})$
$\Rightarrow \operatorname{ar}(\triangle A O D)+\operatorname{ar}(\triangle O D C)$
$=\operatorname{ar}(\mathrm{ABOC})+\operatorname{ar}(\mathrm{AODC})$
$\Rightarrow \operatorname{ar}(\triangle A O D)=\operatorname{ar}(\triangle B O C)$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{AOD})}{\operatorname{ar}(\triangle \mathrm{BOC})}=1$
Ans: 4. In || ${ }^{\mathrm{gm}} \mathrm{ABCD}$,
$\operatorname{ar}(\triangle \mathrm{APC})=\operatorname{ar}(\triangle \mathrm{BCP}) \ldots(\mathrm{i})$
$[\because$ triangles on the same base and between the same parallels have equal area]

Similarly, $\operatorname{ar}(\triangle \mathrm{ADQ})=\operatorname{ar}(\triangle \mathrm{ADC}) \mathrm{i} . . .(\mathrm{ii})$
Now, $\operatorname{ar}(\triangle A D Q)-\operatorname{ar}(\triangle A D P)=\operatorname{ar}(\triangle A D C)-\operatorname{ar}(\triangle A D P)$
$\operatorname{ar}(\triangle \mathrm{DPQ})=\operatorname{ar}(\triangle \mathrm{ACP}) \ldots$ (iii)
From (i) and (iii), we have
$\operatorname{ar}(\triangle B C P)=\operatorname{ar}(\triangle D P Q)$
or $\operatorname{ar}(\triangle \mathrm{BPC})=\operatorname{ar}(\triangle \mathrm{DPQ})$
Ans: 5. Since parallelogram PQRS and APXQ are on the same base PQ and lie between the same
parallels PQ || SR
\therefore Altitude of the $\triangle P X Q$ and \| \mid gm PQRS is same.
Now, $\frac{1}{2} \mathrm{PQ} \times$ altitude $=\operatorname{ar}(\triangle \mathrm{PXQ})$
$\Rightarrow \frac{1}{2} \times 8 \times$ altitude $=32$
altitude $=8 \mathrm{~cm}$
$\operatorname{ar}(|\mid g m P Q R S)=2 \operatorname{ar}(\triangle P X Q)$
$=2 \times 32=64 \mathrm{~cm}^{2}$
Hence, the altitude of parallelogram PQRS is 8 cm and its area is $64 \mathrm{~cm}^{2}$.
Ans: 6 . Since in $\triangle A E C, C D=D E, A D$ is a median.
$\therefore \operatorname{ar}(\triangle A C D)=\operatorname{ar}(\triangle A D E)$
[\because median divides a triangle into two triangles of equal areas]
Now, in $\triangle A B D, D E=E B, A E$ is a median
$\operatorname{ar}(\triangle \mathrm{ADE})=\operatorname{ar}(\triangle \mathrm{AEB})$
From (i), (ii), we obtain
$\operatorname{ar}(\triangle \mathrm{ACD})=\operatorname{ar}(\triangle \mathrm{ADE})=\operatorname{ar}(\triangle \mathrm{AEB}) \frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$
$\therefore \operatorname{ar}(\triangle \mathrm{ADE})=\frac{1}{3} \times 27=9 \mathrm{~cm}^{2}$

Long Answer:

Ans: 1. $\therefore \operatorname{ar}(\triangle \mathrm{EHT})=\frac{1}{2} \operatorname{ar}(| |$ gm EFGH $)$
Similarly, Δ GUF and parallelogram EFGH are on the same base GF and lie between the same parallels GF and HE
$\therefore \operatorname{ar}(\Delta \mathrm{GUF})=\frac{1}{2} \operatorname{ar}(| | \mathrm{gm} \mathrm{EFGH})$
From (i) and (ii), we have
$\operatorname{ar}(\Delta \mathrm{GUF})=\operatorname{ar}(\Delta \mathrm{EHT})$

AREA OF PARALLELOGRAMS AND TRIANGLES

$=16 \mathrm{~cm}^{2}\left[\because \operatorname{ar}(\Delta \mathrm{EHT})=16 \mathrm{~cm}^{2}\right]$ [given]
Ans: 2. Through P, draw a line LM || DA and EF || AB
Since $\triangle A P B$ and \|gm ABFE are on the same base $A B$ and lie between the same parallels $A B$ and $E F$.
$\therefore \operatorname{ar}(\triangle \mathrm{APB})=\frac{1}{2} \operatorname{ar}(| | \mathrm{gm} \mathrm{ABFE})$

Similarly, ACPD and parallelogram DCFE are on the same base DC and between the same parallels DC and EF.
$\therefore \operatorname{ar}(\triangle C P D)=\frac{1}{2} \operatorname{ar}\left(| |^{\text {gm }}\right.$ DCFE $) . .$. (ii)
Adding (i) and (ii), we have
$\operatorname{ar}(\triangle \mathrm{APB})+\operatorname{ar}(\triangle C P D)=\frac{1}{2} \operatorname{ar}\left(| |^{\mathrm{gm}} \mathrm{ABFE}\right)+\operatorname{ar}\left(| |^{\mathrm{gm}}\right.$ DCFE $)$
$=\frac{1}{2} \operatorname{ar}\left(\mid{ }^{\mathrm{gm}} \mathrm{ABCD}\right) . .$. (iii)
Since $\triangle A P D$ and parallelogram ADLM are on the same base $A B$ and between the same parallels AD and ML
$\therefore \operatorname{ar}(\triangle \mathrm{APD})=\frac{1}{2} \operatorname{ar}\left(| |^{\mathrm{gm}} \mathrm{ADLM}\right) . . .$. (iv)
Similarly, $\left.\operatorname{ar}(\triangle B P C)=\frac{1}{2}=\operatorname{arc} /\left.\right|^{\mathrm{gm}} \mathrm{BCLM}\right) \ldots(\mathrm{v})$
Adding (iv) and (u), we have
$\operatorname{ar}(\triangle \mathrm{APD})+\operatorname{ar}(\triangle \mathrm{BPC})=\frac{1}{2} \operatorname{ar}\left(| |^{\mathrm{gm}} \mathrm{ABCD}\right)$
From (iii) and (vi), we obtain
$\operatorname{ar}(\triangle \mathrm{APB})+\operatorname{ar}(\triangle \mathrm{CPD})=\operatorname{ar}(\triangle \mathrm{APD})+\operatorname{ar}(\mathrm{ABPC})$
Ans: 3. In $\triangle P A D, \angle A=90^{\circ}$ and $D A=P A=A B$
$\Rightarrow \angle A D P=\angle A P D=\frac{90^{\circ}}{2}=45^{\circ}$
Similarly, in $\triangle \mathrm{QBC}, \angle \mathrm{B}=90^{\circ}$ and $\mathrm{BQ}=\mathrm{BC}=\mathrm{AB}$
$\Rightarrow \angle B C Q=\angle B Q C=\frac{90^{\circ}}{2}=45^{\circ}$
In $\triangle P A D$ and $\triangle Q B C$, we have
$\mathrm{PA}=\mathrm{BQ}$ [given]
$\angle A=\angle B\left[\right.$ each $\left.=90^{\circ}\right]$
$A D=B C$ [sides of a square]
$\Rightarrow \angle P A D \cong \triangle Q B C$ [by SAS congruence rule]
$\Rightarrow \mathrm{PD}=\mathrm{QC}$ [c.p.c.t.]
Now, in APDC and $\triangle Q C D$
DC = DC [common]
PD = QC [prove above]
$\angle P D C=\angle Q C D$ [each $=90^{\circ}+45^{\circ}=135^{\circ}$]
$\Rightarrow \triangle P D C=\triangle Q C D$ [by SAS congruence rule]
$\Rightarrow P C=Q D$ or $D Q=C P$
Ans: 4. Since PQRS is a parallelogram.
$\therefore P S=Q R$ and $P S \| Q R$
Since SRNM is also a parallelogram.
$\therefore \mathrm{SM}=\mathrm{RN}$ and $\mathrm{SM} \| \mathrm{RN}$
Also, PQNM is a parallelogram
$\therefore P M \| Q M$ and $P M=Q M$
Now, in APSM and \triangle QRN
PS = QR
$S M=R N$
$\mathrm{PM}=\mathrm{QN}$
$\Delta \mathrm{PSM} \cong \triangle \mathrm{QRN}$ [by SSS congruence axiom]
$\therefore \operatorname{ar}(\triangle \mathrm{PSM})=\operatorname{ar}(\triangle \mathrm{QRN})$ [congruent triangles have same areas)
Ans: 5.

(i) Let ABCD be the plot and Naveen decided to donate some portion to construct a home for orphan girls from one corner say C of plot ABCD. Now, Naveen also purchases equal amount of land in lieu of land CDO, so that he may have triangular form of plot. BD is joined. Draw a line through C parallel to DB to meet $A B$ produced in P.

Join $D P$ to intersect $B C$ at 0 .
Now, ABCD and ABPD are on the same base and between same parallels CP || DB.

```
\(\operatorname{ar}(\triangle \mathrm{BCD})=\operatorname{ar}(\triangle \mathrm{BPD}) \operatorname{ar}(\triangle \mathrm{COD})+\operatorname{ar}(\triangle \mathrm{DBO})=\operatorname{ar}(\triangle \mathrm{BOP})+\operatorname{ar}(\triangle \mathrm{DBO})\)
\(\operatorname{ar}(A C O D)=\operatorname{ar}(A B O P) \operatorname{ar}(\) quad. \(A B C D)\)
\(=\operatorname{ar}(q u a d . A B O D)+\operatorname{ar}(\Delta C O D)\)
\(=\operatorname{ar}(q u a d . A B O D)+\operatorname{ar}(\triangle B O P)\)
\([\because \operatorname{ar}(A C O D)=\operatorname{ar}(A B O P)]\) (proved above]
\(=\operatorname{ar}(\triangle \mathrm{APD})\)
```

Hence, Naveen purchased the portion ABOP to meet his requirement.
(ii) Two triangles on the same base and between same parallels are equal in area.
(iii) We should help the orphan children.

Assertion and Reason Answers-

1. a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
2. c) Assertion is correct statement but reason is wrong statement.
