MATHEMATICS

Chapter 8: Quadrilaterals

Quadrilaterals

Quadrilateral

A quadrilateral is a closed figure obtained by joining four points (with no three points collinear) in an order.

Here, $A B C D$ is a quadrilateral.

Parts of a quadrilateral

- A quadrilateral has four sides, four angles and four vertices.
- Two sides of a quadrilateral having no common end point are called its opposite sides.
- Two sides of a quadrilateral having a common end point are called its adjacent sides.
- Two angles of a quadrilateral having common arm are called its adjacent angles.
- Two angles of a quadrilateral not having a common arm are called its opposite angles.
- A diagonal is a line segment obtained on joining the opposite vertices.

Angle sum property of a quadrilateral

Sum of all the angles of a quadrilateral is 360°. This is known as the angle sum property of a quadrilateral.

Types of quadrilaterals and their properties:

Name of a quadrilateral	Properties
Parallelogram: A quadrilateral with each pair of opposite sides parallel.	i.

Rhombus: A parallelogram with sides of equal length.	i. All properties of a parallelogram. ii. Diagonals are perpendicular to each other.
Rectangle: A parallelogram with all angles right angle.	i. All the properties of a parallelogram. ii. Each of the angles is a right angle. iii. Diagonals are equal.
Square: A rectangle with sides of equal length.	All the properties of a parallelogram, a rhombus and a rectangle.
Kite: A quadrilateral with exactly two pairs of equal consecutive sides.	i. The diagonals are perpendicular to one another. ii. One of the diagonals bisects the other. iii. If $A B C D$ is a kite, then $\angle B=\angle D$ but $\angle A \neq \angle C$
Trapezium: A quadrilateral with one pair of opposite sides parallel is called trapezium.	One pair of opposite sides parallel.

Important facts about quadrilaterals

- If the non-parallel sides of trapezium are equal, it is known as isosceles trapezium.
- Square, rectangle and rhombus are all parallelograms.
- Kite and trapezium are not parallelograms.
- A square is a rectangle.
- A square is a rhombus.
- A parallelogram is a trapezium.

A quadrilateral is a parallelogram if:

i. each pair of opposite sides of a quadrilateral is equal, or
ii. each pair of opposite angles is equal, or
iii. the diagonals of a quadrilateral bisect other, or
iv. each pair of opposite sides is equal and parallel.

Mid-Point Theorem

The line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it.

Converse of mid-point theorem

The line drawn through the mid-point of one side of a triangle, parallel to another side, bisects the third side.

Formation of a new quadrilateral using the given data

- If the diagonals of a parallelogram are equal, then it is a rectangle.
- If the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
- If the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is asquare.

If there are three or more parallel lines and the intercepts made by them on a transversal are equal, then the corresponding intercepts on any other transversal are also equal.

Parallelogram: Opposite sides of a parallelogram are equal

In $\triangle A B C$ and $\triangle C D A$
$\mathrm{AC}=\mathrm{AC}$ [Common / transversal]
$\angle B C A=\angle D A C$ [alternate angles]
$\angle B A C=\angle D C A$ [alternate angles]
$\Delta \mathrm{ABC} \cong \triangle \mathrm{CDA}$ [ASA rule]
Hence,
$A B=D C$ and $A D=B C[$ C.P.C.T.C]
Opposite angles in a parallelogram are equal

In parallelogram ABCD
$A B \| C D$; and $A C$ is the transversal
Hence, $\angle 1=\angle 3 \ldots$.. (1) (alternate interior angles)
$B C$ || $D A$; and $A C$ is the transversal
Hence, $\angle 2=\angle 4 \ldots$... (2) (alternate interior angles)
Adding (1) and (2)
$\angle 1+\angle 2=\angle 3+\angle 4$
$\angle B A D=\angle B C D$
Similarly,
$\angle A D C=\angle A B C$

Properties of diagonal of a parallelogram

Diagonals of a parallelogram bisect each other.

In $\triangle A O B$ and $\triangle C O D$,
$\angle 3=\angle 5$ [alternate interior angles]
$\angle 1=\angle 2$ [vertically opposite angles]
$A B=C D$ [opp. Sides of parallelogram]
$\triangle A O B \cong \triangle C O D$ [AAS rule]
$O B=O D$ and $O A=O C$ [C.P.C.T]
Hence, proved
Conversely,
If the diagonals of a quadrilateral bisect each other, then it is a parallelogram.
Diagonal of a parallelogram divides it into two congruent triangles.

In $\triangle \mathrm{ABC}$ and $\triangle C D A$,
$A B=C D[O p p o s i t e ~ s i d e s ~ o f ~ p a r a l l e l o g r a m]$
$B C=A D[O p p o s i t e ~ s i d e s ~ o f ~ p a r a l l e l o g r a m]$
$\mathrm{AC}=\mathrm{AC}$ [Common side]
$\triangle \mathrm{ABC} \cong \triangle C D A[$ by SSS rule]
Hence, proved.
Diagonals of a rhombus bisect each other at right angles
Diagonals of a rhombus bisect each - other at right angles

In $\triangle \mathrm{AOD}$ and $\triangle C O D$,
$\mathrm{OA}=\mathrm{OC}$ [Diagonals of parallelogram bisect each other]
OD = OD [Common side]
$\mathrm{AD}=\mathrm{CD}$ [Adjacent sides of a rhombus]
$\triangle \mathrm{AOD} \cong \triangle \mathrm{COD}[\mathrm{SSS}$ rule]
$\angle A O D=\angle D O C$ [C.P.C.T]
$\angle A O D+\angle D O C=180[\because$ AOC is a straight line $]$
Hence, $\angle A O D=\angle D O C=90$
Hence proved.
Diagonals of a rectangle bisect each other and are equal

Rectangle ABCD
In $\triangle A B C$ and $\triangle B A D$,
$A B=B A[C o m m o n$ side]
$B C=A D[$ Opposite sides of a rectangle]
$\angle A B C=\angle B A D[$ Each $=900 \because A B C D$ is a Rectangle $]$
$\Delta \mathrm{ABC} \cong \triangle \mathrm{BAD}$ [SAS rule]
$\therefore \mathrm{AC}=\mathrm{BD}$ [C.P.C.T]
Consider $\triangle \mathrm{OAD}$ and $\triangle \mathrm{OCB}$,
$A D=C B$ [Opposite sides of a rectangle]
$\angle O A D=\angle O C B[\because A D| | B C$ and transversal $A C$ intersects them $]$
$\angle O D A=\angle O B C[\because A D| | B C$ and transversal $B D$ intersects them $]$
$\triangle \mathrm{OAD} \cong \triangle \mathrm{OCB}$ [ASA rule]
$\therefore \mathrm{OA}=\mathrm{OC}$ [C.P.C.T]
Similarly, we can prove $O B=O D$
Diagonals of a square bisect each other at right angles and are equal

In $\triangle A B C$ and $\triangle B A D$,
$A B=B A[C o m m o n$ side]
$B C=A D$ [Opposite sides of a Square]
$\angle A B C=\angle B A D[$ Each $=900 \because A B C D$ is a Square $]$
$\Delta \mathrm{ABC} \cong \triangle \mathrm{BAD}$ [SAS rule]
$\therefore \mathrm{AC}=\mathrm{BD}$ [C.P.C.T]
Consider $\triangle \mathrm{OAD}$ and $\triangle \mathrm{OCB}$,
$A D=C B$ [Opposite sides of a Square]
$\angle O A D=\angle O C B[\because A D \| B C$ and transversal $A C$ intersects them $]$
$\angle O D A=\angle O B C[\because A D| | B C$ and transversal $B D$ intersects them $]$
$\triangle O A D \cong \triangle O C B$ [ASA rule]
$\therefore \mathrm{OA}=\mathrm{OC}$ [C.P.C.T]
Similarly, we can prove $O B=O D$
In $\triangle O B A$ and $\triangle O D A$,
$\mathrm{OB}=\mathrm{OD}$ [proved above]
BA $=\mathrm{DA}$ [Sides of a Square]
$\mathrm{OA}=\mathrm{OA}[$ Common side]
$\triangle \mathrm{OBA} \cong \triangle \mathrm{ODA},[\mathrm{SSS}$ rule]
$\therefore \angle A O B=\angle A O D$ [C.P.C.T]
But $\angle A O B+\angle A O D=1800$ [Linear pair]
$\therefore \angle A O B=\angle A O D=90^{\circ}$
Important results related to parallelograms

Opposite sides of a parallelogram are parallel and equal.
$A B\|C D, A D\| B C, A B=C D, A D=B C$

Opposite angles of a parallelogram are equal adjacent angels are supplementary.
$\angle A=\angle C, \angle B=\angle D$,
$\angle A+\angle B=1800, \angle B+\angle C=1800, \angle C+\angle D=1800, \angle D+\angle A=1800$
A diagonal of parallelogram divides it into two congruent triangles.
$\triangle \mathrm{ABC} \cong \triangle C D A$ [With respect to $A C$ as diagonal]
$\Delta \mathrm{ADB} \cong \triangle \mathrm{CBD}$ [With respect to BD as diagonal]
The diagonals of a parallelogram bisect each other.
$A E=C E, B E=D E$
$\angle 1=\angle 5$ (alternate interior angles)
$\angle 2=\angle 6$ (alternate interior angles)
$\angle 3=\angle 7$ (alternate interior angles)
$\angle 4=\angle 8$ (alternate interior angles)
$\angle 9=\angle 11$ (vertically opp. angles)
$\angle 10=\angle 12$ (vertically opp. angles)
The Mid-Point Theorem
The line segment joining the midpoints of two sides of a triangle is parallel to the third side and is half of the third side

In $\triangle A B C, E$ - the midpoint of $A B ; F$ - the midpoint of $A C$

Construction: Produce EF to D such that EF = DF.
In $\triangle A E F$ and $\triangle C D F$,
$A F=C F[F$ is the midpoint of $A C]$
$\angle A F E=\angle C F D[$ V.O.A]
$\mathrm{EF}=\mathrm{DF}$ [Construction]
$\therefore \Delta \mathrm{AEF} \cong \triangle \mathrm{CDF}[\mathrm{SAS}$ rule]
Hence,
$\angle E A F=\angle D C F$
$D C=E A=E B[E$ is the midpoint of $A B]$
DC || EA || AB [Since, (1), alternate interior angles]
DC || EB
So EBCD is a parallelogram
Therefore, $\mathrm{BC}=\mathrm{ED}$ and $\mathrm{BC}|\mid \mathrm{ED}$
Since $E D=E F+F D=2 E F=B C[\because E F=F D]$
We have, $\mathrm{EF}=12 \mathrm{BC}$ and $\mathrm{EF}|\mid \mathrm{BC}$
Hence proved.

Class: 9th mathematics Chapter- 8: Quadrilaterals

Important Questions

Multiple Choice questions-

Question 1. A diagonal of a Rectangle is inclines to one side of the rectangle at an angle of 25°. The Acute Angle between the diagonals is:
(a) 115°
(b) 50°
(c) 40°
(d) 25°

Question 2. The diagonals of a rectangle PQRS intersects at 0 . If $\angle Q O R=44^{\circ}$, $\angle O P S=$?
(a) 82°
(b) 52°
(c) 68°
(d) 75°

Question 3. If angles A, B, C and D of the quadrilateral $A B C D$, taken in order, are in the ratio 3:7:6:4, then $A B C D$ is
(a) Rhombus
(b) Parallelogram
(c) Trapezium
(d) Kite

Question 4. All the angles of a convex quadrilateral are congruent. However, not all its sides are congruent. What type of quadrilateral is it?
(a) Parallelogram
(b) Square
(c) Rectangle
(d) Trapezium

Question 5. In a Quadrilateral $A B C D, A B=B C$ and $C D=D A$, then the quadrilateral is a
(a) Triangle
(b) Kite
(c) Rhombus
(d) Rectangle

Question 6. The angles of a quadrilateral are $(5 x)^{\circ},(3 x+10)^{\circ},(6 x-20)^{\circ}$ and $(x$
$+25)^{\circ}$. Now, the measure of each angle of the quadrilateral will be
(a) $115^{\circ}, 79^{\circ}, 118^{\circ}, 48^{\circ}$
(b) $100^{\circ} 79^{\circ}, 118^{\circ}, 63^{\circ}$
(c) $110^{\circ}, 84^{\circ}, 106^{\circ}, 60^{\circ}$
(d) $75^{\circ}, 89^{\circ}, 128^{\circ}, 68^{\circ}$

Question 7. The diagonals of rhombus are 12 cm and 16 cm . The length of the side of rhombus is:
(a) 12 cm
(b) 16 cm
(c) 8 cm
(d) 10 cm

Question 8. In quadrilateral PQRS, if $\angle P=60^{\circ}$ and $\angle \mathrm{Q}: \angle \mathrm{R}: \angle \mathrm{S}=2: 3: 7$, then $\angle S=$
(a) 175°
(b) 210°
(c) 150°
(d) 135°

Question 9. In parallelogram $A B C D$, if $\angle A=2 x+15^{\circ}, \angle B=3 x-25^{\circ}$, then value of x is:
(a) 91°
(b) 89°
(c) 34°
(d) 38°

Question 10. If $A B C D$ is a trapezium in which $A B \| C D$ and $A D=B C$, then:
(a) $\angle A=\angle B$
(b) $\angle A>\angle B$
(c) $\angle A<\angle B$
(d) None of the above

Very Short:

1. If one angle of a parallelogram is twice of its adjacent angle, find the angles of the parallelogram.
2. If the diagonals of a quadrilateral bisect each other at right angles, then name the quadrilateral.
3. Three angles of a quadrilateral are equal, and the fourth angle is equal to 1440. Find each of the equal angles of the quadrilateral.
4. If $A B C D$ is a parallelogram, then what is the measure of $\angle A-\angle C$?
5. PQRS is a parallelogram, in which $\mathrm{PQ}=12 \mathrm{~cm}$ and its perimeter is 40 cm . Find the length of each side of the parallelogram.
6. Two consecutive angles of a parallelogram are $(x+60)^{\circ}$ and $(2 x+30)^{\circ}$. What special name can you give to this parallelogram?
7. ONKA is a square with $\angle K O N=45^{\circ}$. Determine $\angle K O A$.
8. In quadrilateral PQRS, if $\angle P=60^{\circ}$ and $\angle Q: \angle R: \angle S=2: 3: 7$, then find the measure of $\angle S$.

Short Questions:

1. $A B C D$ is a parallelogram in which $\angle A D C=75^{\circ}$ and side $A B$ is produced to point E as shown in the figure. Find $x+y$.
2. If the diagonals of a parallelogram are equal, then show that it is a rectangle.
3. In the figure, $A B C D$ is a rhombus, whose diagonals meet at O. Find the values of x and y.
4. $A B C D$ is a parallelogram and $A P$ and $C Q$ are perpendiculars from vertices A and C on diagonal $B D$ (see fig.). Show that:
(i) $\triangle \mathrm{APB}=\triangle \mathrm{CQD}$
(ii) $\mathrm{AP}=\mathrm{CQ}$
5. The diagonals of a quadrilateral $A B C D$ are perpendicular to each other. Show that the quadrilateral formed by joining the mid-points of its sides is a rectangle.

6. In the fig., D, E and F are, respectively the mid-points of sides $B C, C A$ and $A B$ of an equilateral triangle $A B C$. Prove that $D E F$ is also an equilateral triangle.
B
D
C

Long Questions:

1. In the figure, P, Q and R are the mid-points of the sides $B C, A C$ and $A B$ of $\triangle A B C$. If $B Q$ and $P R$ intersect at X and $C R$ and $P Q$ intersect at Y, then show that $X Y=\frac{1}{4} B C$

2. In the given figure, $A E=D E$ and $B C \| A D$. Prove that the points A, B, C and D are concyclic. Also, prove that the diagonals of the quadrilateral $A B C D$ are equal.

3. In $\triangle A B C, A B=8 \mathrm{~cm}, B C=9 \mathrm{~cm}$ and $A C=10 \mathrm{~cm} . X, Y$ and Z are mid-points of $A O, B O$ and $C O$ respectively as shown in the figure. Find the lengths of the sides of $\triangle X Y Z$.

4. PQRS is a square and $\angle A B C=90^{\circ}$ as shown in the figure. If $A P=B Q=C R$, then prove that $\angle B A C=45^{\circ}$

5. $A B C D$ is a parallelogram. If the bisectors $D P$ and $C P$ of angles D and C meet at P on side $A B$, then show that P is the mid-point of side $A B$.

Assertion and Reason Questions-

1. In these questions, a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.
a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
c) Assertion is correct statement but reason is wrong statement.
d) Assertion is wrong statement but reason is correct statement.

Assertion: $A B C D$ is a square. $A C$ and $B D$ intersect at O. The measure of $+A O B=90^{\circ}$.
Reason: Diagonals of a square bisect each other at right angles.
2. In these questions, a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.
a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
c) Assertion is correct statement but reason is wrong statement.
d) Assertion is wrong statement but reason is correct statement.

Assertion: The consecutive sides of a quadrilateral have one common point.
Reason: The opposite sides of a quadrilateral have two common point.

Case Study Questions-

1. Read the Source/ Text given below and answer these questions:

Sohan wants to show gratitude towards his teacher by giving her a card made by him. He has three pieces of trapezium pasted one above the other as shown in fig. These pieces are arranged in a way that $A B||H C|| G D|\mid F E$. Also $B C=$
$C D=D E$ and $A H=H G=G F=6 \mathrm{~cm}$. He wants to decorate the card by putting up a colored tape on the nonparallel sides of the trapezium.

i. Find the total length of colored tape required if $D E=4 \mathrm{~cm}$.
a. 20 cm
b. 30 cm
c. 40 cm
d. 50 cm
ii. $A B H C$ is a trapezium in which $A B \| H C$ and $\angle A=\angle B=45 \circ$. Find angles C and H of the trapezium.
a. 135,130
b. 130,135
c. 135,135
d. 130,130
iii. What is the difference between trapezium and parallelogram?
a. Trapezium has 2 sides, and parallelogram has 4 sides.
b. Trapezium has 4 sides, and parallelogram has 2 sides.
c. Trapezium has 1 pair of parallel sides, and parallelogram has 2 pairs of parallel sides.
d. Trapezium has 2 pairs of parallel sides, and parallelogram has 1 pair of parallel sides.
iv. Diagonals in isosceles trapezoid are \qquad .
a. parallel.
b. opposite.
c. vertical.
d. equal.
v. $A B C D$ is a trapezium where $A B|\mid D C, B D$ is the diagonal and E is the midpoint of $A D$. A line is drawn through E parallel to $A B$ intersecting $B C$ at F. Which of these is true?

a. $\mathrm{BF}=\mathrm{FC}$
b. $E A=F B$
c. $C F=D E$
d. None of these
2. Read the Source/ Text given below and answer any four questions:

Chocolate is in the form of a quadrilateral with sides 6 cm and $10 \mathrm{~cm}, 5 \mathrm{~cm}$ and 5 cm (as shown in the figure) is cut into two parts on one of its diagonal by a lady. Part-I is given to her maid and part II is equally divided among a driver and gardener.

i. Length of BD:
a. 9 cm
b. 8 cm
c. 7 cm
d. 6 cm
ii. Area of $\triangle A B C$:
a. $24 \mathrm{~cm}^{2}$
b. $12 \mathrm{~cm}^{2}$
c. $42 \mathrm{~cm}^{2}$
d. $21 \mathrm{~cm}^{2}$
iii. The sum of all the angles of a quadrilateral is equal to:
a. 180°
b. 270°
c. 360°
d. 90°
iv. A diagonal of a parallelogram divides it into two congruent:
a. Square.
b. Parallelogram.
c. Triangles.
d. Rectangle.
v. Each angle of the rectangle is:
a. More than 90°
b. Less than 90°
c. Equal to 90°

Answer Key:

MCQ:

1. (b) 50°
2. (c) 68°
3. (c) Trapezium
4. (c) Rectangle
5. (b) Kite
6. (a) $115^{\circ}, 79^{\circ}, 118^{\circ}, 48^{\circ}$
7. (d) 10 cm
8. (a) 175°
9. (d) 38°
10.(a) $\angle A=\angle B$

Very Short Answer:

1. Let the two adjacent angles be x and $2 x$.

In a parallelogram, sum of the adjacent angles are 180°
$\therefore \mathrm{x}+2 \mathrm{x}=180^{\circ}$
$\Rightarrow 3 \mathrm{x}=180^{\circ}$
$\Rightarrow x=60^{\circ}$
Thus, the two adjacent angles are 120° and 60°. Hence, the angles of the parallelogram are $120^{\circ}, 60^{\circ}, 120^{\circ}$ and 60°.
2. Rhombus.
3. Let each equal angle of given quadrilateral be x.

We know that sum of all interior angles of a quadrilateral is 360°
$\therefore \mathrm{x}+\mathrm{x}+\mathrm{x}+144^{\circ}=360^{\circ}$
$3 x=360^{\circ}-144^{\circ}$
$3 x=216^{\circ}$
$x=72^{\circ}$
Hence, each equal angle of the quadrilateral is of 720 measures.
4. $\angle A-\angle C=0^{\circ}$ (opposite angles of parallelogram are equal]
5.

```
<CIT *
```

Here, $\mathrm{PQ}=\mathrm{SR}=12 \mathrm{~cm}$
Let $\mathrm{PS}=\mathrm{x}$ and $\mathrm{PS}=\mathrm{QR}$
$\therefore \mathrm{x}+12+\mathrm{x}+12=$ Perimeter

$$
\begin{aligned}
& 2 x+24=40 \\
& 2 x=16 \\
& x=8
\end{aligned}
$$

Hence, length of each side of the parallelogram is $12 \mathrm{~cm}, 8 \mathrm{~cm}, 12 \mathrm{~cm}$ and 8 cm .
6. We know that consecutive interior angles of a parallelogram are supplementary.
$\therefore\left(\mathrm{x}+60^{\circ}+(2 \mathrm{x}+30)^{\circ}=180^{\circ}\right.$
$\Rightarrow 3 x^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow 3 x^{\circ}=90^{\circ}$
$\Rightarrow \mathrm{x}^{\circ}=30^{\circ}$
Thus, two consecutive angles are $\left.(30+60)^{\circ}, 12 \times 30+30\right)^{\prime \prime}$. i.e., 90° and 90°.
Hence, the special name of the given parallelogram is rectangle.
7. Since ONKA is a square
$\therefore \angle \mathrm{AON}=90^{\circ}$
We know that diagonal of a square bisects its \angle s
$\Rightarrow \angle A O K=\angle K O N=45^{\circ}$
Hence, $\angle K O A=45^{\circ}$
Now, $\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow \angle A+70^{\circ}+70^{\circ}=180^{\circ}$
$\left[\because \angle B=70^{\circ}\right]$
$\Rightarrow \angle A=180^{\circ}-70^{\circ}-70^{\circ}=40^{\circ}$
8. Let $\angle Q=2 x, \angle R=3 x$ and $\angle S=7 x$

Now, $\angle P+\angle Q+\angle R+\angle S=360^{\circ}$
$\Rightarrow 60^{\circ}+2 x+3 x+7 x=360^{\circ}$
$\Rightarrow 12 x=300^{\circ}$
$X=\frac{300^{\circ}}{12}=25^{\circ}$
$\angle S=7 x=7 \times 25^{\circ}=175^{\circ}$

Short Answer:

Ans: 1.

Here, $\angle \mathrm{C}$ and $\angle \mathrm{D}$ are adjacent angles of the parallelogram.
$\therefore \angle \mathrm{C}+\angle \mathrm{D}=180^{\circ}$
$\Rightarrow x+75^{\circ}=180^{\circ}$
$\Rightarrow \mathrm{x}=105^{\circ}$
Also, $y=x=105^{\circ}$ [alt. int. angles]
Thus, $x+y=105^{\circ}+105^{\circ}=210^{\circ}$
Ans: 2.

Given: A parallelogram $A B C D$, in which $A C=B D$.
To Prove: $\triangle \mathrm{BCD}$ is a rectangle.
Proof: In $\triangle A B C$ and $\triangle B A D$
$A B=A B$ (common]
$A C=B D$ (given)
$B C=A D$ (opp. sides of a ||gm]
$\Rightarrow \triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$
[by SSS congruence axiom]
$\Rightarrow \angle A B C=\angle B A D$ (c.p.c.t.)
Also, $\angle A B C+\angle B A D=180^{\circ}$ (co-interior angles)
$\angle A B C+\angle A B C=180^{\circ}[\because \angle A B C=\angle B A D]$
$2 \angle A B C=180^{\circ}$
$\angle A B C=1 / 2 \times 180^{\circ}=90^{\circ}$
Hence, parallelogram $A B C D$ is a rectangle.
Ans: 3. Since diagonals of a rhombus bisect each other at right angle.
In $\therefore \triangle A O B$, we have
$\angle O A B+\angle x+90^{\circ}=180^{\circ}$
$\angle x=180^{\circ}-90^{\circ}-35^{\circ}$
$=55^{\circ}$
Also,
$\angle D A O=\angle B A O=35^{\circ}$
$\angle y+\angle D A O+\angle B A O+\angle x=180^{\circ}$
$\Rightarrow \angle y+35^{\circ}+35^{\circ}+55^{\circ}=180^{\circ}$
$\Rightarrow \angle y=180^{\circ}-1250=55^{\circ}$
Hence, the values of x and y are $x=55^{\circ}, y=55$
Ans: 4.

Given: In ||gm ABCD, AP and CQ are perpendiculars from the vertices A and C on the diagonal $B D$.

To Prove: (i) $\triangle A P B \cong \triangle C Q D$
(ii) $\mathrm{AP}=\mathrm{CQ}$

Proof: (i) In $\triangle A P B$ and $\triangle C Q D$
$A B=D C$ (opp. sides of a ||gm ABCD]
$\angle A P B=\angle D Q C\left(\right.$ each $\left.=90^{\circ}\right)$
$\angle \mathrm{ABP}=\angle \mathrm{CDQ}$ (alt. int. $\angle \mathrm{s}$]
$\Rightarrow \triangle \mathrm{APB} \cong \triangle \mathrm{CQD}$ [by AAS congruence axiom]
(ii) $\Rightarrow A P=C Q$ [c.p.c.t.]

Ans: 5. Given: A quadrilateral $A B C D$ whose diagonals $A C$ and $B D$ are perpendicular to each other at O. P, Q, R and S are mid-points of side $A B, B C, C D$ and $D A$ respectively are joined are formed quadrilateral PQRS.

To Prove: PQRS is a rectangle.
Proof: In $\triangle A B C, P$ and Q are mid-points of $A B$ and $B C$ respectively.
$\therefore P Q \| A C$ and $P Q=\frac{1}{2} A C \ldots$ (i) (mid-point theorem)
Further, in SACD, R and S are mid-points of CD and DA respectively.
$S R \| A C$ and $S R=\frac{1}{2} A C \ldots$ (ii) (mid-point theorem)
From (i) and (ii), we have $P Q \| S R$ and $P Q=S R$
Thus, one pair of opposite sides of quadrilateral PQRS are parallel and equal.
\therefore PQRS is a parallelogram.
Since PQ|| AC PM || NO
In $\triangle A B D, P$ and S are mid-points of $A B$ and $A D$ respectively.
PS || BD (mid-point theorem]
$\Rightarrow \mathrm{PN}|\mid \mathrm{MO}$
\therefore Opposite sides of quadrilateral PMON are parallel.
\therefore PMON is a parallelogram.
$\angle \mathrm{MPN}=\angle \mathrm{MON}$ (opposite angles of ||gm are equal]
But $\angle \mathrm{MON}=90^{\circ}$ [given]
$\therefore \angle \mathrm{MPN}=90^{\circ} \Rightarrow \angle \mathrm{QPS}=90^{\circ}$
Thus, PQRS is a parallelogram whose one angle is 90°
\therefore PQRS is a rectangle.
Ans: 6. Since line segment joining the mid-points of two sides of a triangle is half of the third side.

Therefore, D and E are mid-points of $B C$ and $A C$ respectively.
$\Rightarrow \mathrm{DE}=\frac{1}{2} \mathrm{AB}$
E and F are the mid-points of $A C$ and $A B$ respectively.
$\therefore \mathrm{EF}=\frac{1}{2} \mathrm{BC}$
F and D are the mid-points of $A B$ and $B C$ respectively.
$\therefore F D=\frac{1}{2} A C$...
Now, $S A B C$ is an equilateral triangle.
$\Rightarrow A B=B C=C A$
$\Rightarrow \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{BC}=\frac{1}{2} \mathrm{CA}$
$\Rightarrow D E=E F=F D$ (using (i), (ii) and (iii)]
Hence, DEF is an equilateral triangle

Long Answer:

Ans: 1. Here, in $\triangle A B C, R$ and Q are the mid-points of $A B$ and $A C$ respectively.
\therefore By using mid-point theorem, we have
$R Q\left|\mid B C\right.$ and $R Q=\frac{1}{2} B C$
$\therefore R Q=B P=P C[\because P$ is the mid-point of $B C]$
$\therefore R Q|\mid B P$ and $R Q| \mid P C$
In quadrilateral BPQR
$R Q|\mid B P, R Q=B P$ (proved above)
\therefore BPQR is a parallelogram. [\because one pair of opp. sides is parallel as well as equal]
$\therefore \mathrm{X}$ is the mid-point of PR. [\because diagonals of a ||gm bisect each other]

Now, in quadrilateral PCQR
$R Q|\mid P C$ and $R Q=P C$ [proved above)
\therefore PCQR is a parallelogram [\because one pair of opp. sides is parallel as well as equal]
$\therefore \mathrm{Y}$ is the mid-point of PQ [\because diagonals of a ||gm bisect each other]
In $\triangle P Q R$
$\therefore \mathrm{X}$ and Y are mid-points of PR and $P Q$ respectively.
$\therefore \mathrm{XY} \| \mathrm{RQ}$ and $\mathrm{XY}=\frac{1}{2} \mathrm{RQ} \quad$ [by using mid-point theorem]

$$
\begin{array}{rlr}
\mathrm{XY} & =\frac{1}{2}\left(\frac{1}{2} B C\right) & {\left[\because \mathrm{RQ}=\frac{1}{2} B C\right]} \\
\Rightarrow \quad X Y & =\frac{1}{4} B C &
\end{array}
$$

Ans: 2. Since $A E=D E$
$\angle D=\angle A$.... (i) $[\because \angle$ s opp. to equal sides of a $\Delta]$
Again, $B C|\mid A D$
$\angle E B C=\angle A$.... (ii) (corresponding \angle s]
From (i) and (ii), we have
$\angle D=\angle E B C$.... (iii)
But $\angle E B C+\angle A B C=180^{\circ}$ (a linear pair]
$\angle D+\angle A B C=180^{\circ}$ (using (iii)]
Now, a pair of opposite angles of quadrilateral $A B C D$ is supplementary
Thus, $A B C D$ is a cyclic quadrilateral i.e., A, B, C and D 'are concyclic. In $\triangle A B D$ and $\triangle D C A$
$\angle A B D=\angle A C D[\angle s$ in the same segment for cyclic quad. $A B C D]$
$\angle B A D=\angle C D A$ [using (i)]
$A D=A D$ (common]
So, by using AAS congruence axiom, we have
$\triangle A B D \cong \triangle D C A$
Hence, $\mathrm{BD}=\mathrm{CA}$ [c.p.c.t.]
Ans: 3. Here, in $\triangle A B C, A B=8 \mathrm{~cm}, B C=9 \mathrm{~cm}, A C=10 \mathrm{~cm}$.
In $\triangle A O B, X$ and Y are the mid-points of $A O$ and $B O$.
\therefore By using mid-point theorem, we have
$X Y=\frac{1}{2} A B=\frac{1}{2} \times 8 \mathrm{~cm}=4 \mathrm{~cm}$
Similarly, in $\Delta \tau \mathrm{BOC}, \mathrm{Y}$ and Z are the mid-points of BO and CO .
\therefore By using mid-point theorem, we have
$\mathrm{YZ}=\frac{1}{2} \mathrm{BC}=\frac{1}{2} \times 9 \mathrm{~cm}=4.5 \mathrm{~cm}$
And, in $\Delta \tau C O A, Z$ and X are the mid-points of $C O$ and $A O$.
$\therefore \mathrm{ZX}=\frac{1}{2} \mathrm{AC}=\frac{1}{2} \times 10 \mathrm{~cm}=5 \mathrm{~cm}$
Hence, the lengths of the sides of $\Delta X Y Z$ are $X Y=4 \mathrm{~cm}, Y Z=4.5 \mathrm{~cm}$ and $Z X=5 \mathrm{~cm}$.
Ans: 4. Since PQRS is a square.
$\therefore P Q=Q R \ldots$ (I) $[\because$ sides of a square are equal $]$
Also, $\mathrm{BQ}=\mathrm{CR}$... (ii) [given]
Subtracting (ii) from (i), we obtain
$P Q-B Q=Q R-C R$
$\Rightarrow P B=Q C$... (iii)
In $\Delta \tau \mathrm{APB}$ and $\Delta \tau \mathrm{BQC}$
$\mathrm{AP}=\mathrm{BQ}$
[given $\angle A P B=\angle B Q C=90^{\circ}$] $\left(\right.$ each angle of a square is $\left.90^{\circ}\right)$
PB = QC (using (iii)]
So, by using SAS congruence axiom, we have
$\triangle A P B \cong \triangle B Q C$
$\therefore A B=B C$ [c.p.c.t.]
Now, in $\triangle A B C$
$A B=B C$ [proved above]
$\therefore \angle A C B=\angle B A C=x^{\circ}$ (say) [$\angle \mathrm{s}$ opp. to equal sides]
Also, $\angle B+\angle A C B+\angle B A C=180^{\circ}$
$\Rightarrow 90^{\circ}+x+x=180^{\circ}$
$\Rightarrow 2 x^{\circ}=90^{\circ}$
$x^{\circ}=45^{\circ}$
Hence, $\angle B A C=45^{\circ}$

Ans: 5.

Since DP and CP are angle bisectors of $\angle \mathrm{D}$ and $\angle \mathrm{C}$ respectively.
: $\angle 1=\angle 2$ and $\angle 3=\angle 4$
Now, $A B$ || $D C$ and $C P$ is a transversal
$\therefore \angle 5=\angle 1$ [alt. int. $\angle \mathrm{s}$]
But $\angle 1=\angle 2$ [given]
$\therefore \angle 5=\angle 2$
Now, in ABCP, $\angle 5=\angle 2$
$\Rightarrow B C=B P$... (I) [sides opp. to equal $\angle s$ of a A]
Again, $A B$ || $D C$ and $D P$ is a transversal.
$\therefore \angle 6=\angle 3$ (alt. int. Δ s]
But $\angle 4=\angle 3$ [given]
$\therefore \angle 6=\angle 4$
Now, in \triangle ADP, $\angle 6=\angle 4$
$\Rightarrow D A=A P$.... (ii) (sides opp. to equal $\angle s$ of a $A]$
Also, BC = DA... (iii) (opp. sides of parallelogram)
From (i), (ii) and (iii), we have
$B P=A P$
Hence, P is the mid-point of side $A B$.

Assertion and Reason Answers-

1. a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
2. c) Assertion is correct statement but reason is wrong statement.

Case Study Answers-

1.

(i)	(b)	30 cm
(ii)	(c)	135,135
(iii)	(c)	Trapezium has 1 pair of parallel sides, and parallelogram has 2 pairs of parallel sides.
(iv)	(d)	equal.
(v)	(a)	BF $=$ FC

2.

(i)	(b)	$8 \mathrm{~cm}^{2}$
(ii)	(a)	$24 \mathrm{~cm}^{2}$
(iii)	(c)	360°
(iv)	(c)	Triangles.
(v)	(c)	Equal to 90°

