MATHEMATICS

Chapter 4: Practical Geometry

Practical Geometry

1. A quadrilateral is a four-sided polygon.
2. A quadrilateral has four sides, four angles and two diagonals, i.e., 10 elements. A quadrilateral can be constructed uniquely if at least five of its elements are given.
3. A quadrilateral can be constructed uniquely, if we know any one of the following:
i. Four sides and one diagonal
ii. Four sides and one angle
iii. Two diagonals and three sides
iv. Two adjacent sides and three angles
v. Three sides and two included angles
4. For the construction of different type of quadrilaterals like parallelogram, rhombus, trapezium etc. we use their properties.

Construction of a Quadrilateral

It is very easy to construct a quadrilateral when its five measurements are determined that is

- The length of the four sides and the length of its diagonal is known
- The length of the three sides and the length of the two diagonals are known
- If the three angles and two adjacent sides are given
- If the three sides and two angles are given

4 Sides and 1 Diagonal

Construction of a Quadrilateral when different measures of sides and angles are given
A unique quadrilateral can be constructed when the following measurements are given:

- Four sides and one diagonal.
- Two diagonals and three sides.
- Two adjacent sides and three angles.
- Three sides and two included angles.
- When other special properties are known.

SSS Construction

- To construct a $\triangle A B C$, the length of whose sides are, $A B=x c m, B C=y \mathrm{~cm}$, and $A C=z$ cm , we will do it in the following manner:
- Construct a line segment $A B$, whose length is $x \mathrm{~cm}$.
- With A as the center, draw an arc of radius $z \mathrm{~cm}$.
- With B as the center, draw an arc of radius y cm on the same side. The point where the arcs intersect is the required point C.
- Join AC and BC.
$\triangle A B C$ is the required triangle.
Construction of a Quadrilateral when four sides and one diagonal are given
Suppose we have to construct a quadrilateral $P Q R S$, where $P Q=4 \mathrm{~cm}, Q R=6 \mathrm{~cm}, R S=5$ $\mathrm{cm}, \mathrm{PS}=5.5 \mathrm{~cm}$ and $\mathrm{PR}=7 \mathrm{~cm}$.

Step 1: Draw a rough sketch to visualize the quadrilateral.

Step 2: Draw $\triangle P Q R$ as it can be constructed using SSS construction condition.

Step 3: Now we have to locate S, which is at a distance of 5.5 cm from P and 5 cm from R. Also it will be on the opposite side of Q .

With P as center draw an arc of radius 5.5 cm . With R as center draw an arc of radius 5 cm . S is the point of intersection of the two arcs.

Step 4: Join PS and RS. PQRS is the required quadrilateral.

3 Sides and 2 Diagonals

Construction of a Quadrilateral when two diagonals and three sides are given
Construct a quadrilateral $A B C D$ given, $A B=7 \mathrm{~cm}, A D=6 \mathrm{~cm}, A C=7 \mathrm{~cm}, B D=7.5 \mathrm{~cm}$ and $B C$ $=4 \mathrm{~cm}$.
[Make a rough figure for your reference]

Steps of construction of the quadrilateral:

Step 1: $\triangle A B C$ can be drawn by SSS construction condition since all its sides are known.
Step 2: With A as center and radius 6 cm (AD), draw an arc.
Step 3: With B as center and radius $7.5 \mathrm{~cm}(B D)$ draw another arc to cut the previous arc at D

Step 4: Join AD, BD, and CD.
$A B C D$ is the required quadrilateral

2 Adjacent Sides and 3 Angles

Construction of a Quadrilateral when two adjacent sides and three angles are given
Construct a quadrilateral $A L P N$, where $A L=6.5 \mathrm{~cm}, L P=4 \mathrm{~cm}, \angle N A L=110^{\circ}, \angle A L P=75^{\circ}$ and $\angle L P N=90^{\circ}$.
[Draw a rough Sketch for your reference]:
Steps of construction of the quadrilateral:
Step 1: Draw the line segment AL of length 6.5 cm .
Step 2: Make $\angle A L Y=75^{\circ}$ at L.
Step 3: Make $\angle \mathrm{LAX}=110^{\circ}$ at A .
Step 4: With L as center and radius equal to 4 cm , cut an arc on the ray $L Y$ at P.
Step 5: Make $\angle \mathrm{LPZ}=90 \circ$ at P.
Step 6: Name the point of intersection of rays PZ and AX as N.
ALPN is the required quadrilateral.

3 Sides and 2 Included Angles

Construction of a Quadrilateral when three Sides and two included angles are given

Construct a quadrilateral $A B C D$, Where $A B=4.5 \mathrm{~cm} ; B C=3.5 \mathrm{~cm}, C D=5 \mathrm{~cm} \angle A B C=45^{\circ}$, $\angle B C D=150^{\circ}$
[Make a rough figure for your reference]

Steps of construction of the quadrilateral:

Step 1: Draw a line segment BC of length 3.5 cm .
Step 2: Make $\angle \mathrm{LBC}=45^{\circ}$.
Step 3: Make $\angle B C M=150^{\circ}$.
Step 4: With B as center and radius equal to 4.5 cm , cut an arc on the ray LB at A.
Step 5: With C as the center and radius equal to 5 cm , cut an arc on the ray $C M$ at D.
Step 6: Join AD.
$A B C D$ is the required quadrilateral.

4 Sides and One Diagonal are Given

Let us say you are required to construct a quadrilateral PQRS where the measurements are:
$P Q=5 \mathrm{~cm}$
$Q R=3 \mathrm{~cm}$
$\mathrm{RS}=5 \mathrm{~cm}$
PS $=4 \mathrm{~cm}$
Diagonal $\mathrm{SQ}=6 \mathrm{~cm}$
For the construction of quadrilaterals with some of the measurements given, we first draw
a rough figure of the quadrilateral with the given dimensions, as shown below.

Now starting with the construction, the steps are:

- Draw a line segment of length 5 cm and mark the ends as S and R.

S

5 cm

R

- Set your compass to the radius of 3 cm and make an arc from the point R above the line segment.
- Set the compass to the radius of 6 cm and make an arc from the point S on the previous arc.
- Mark the point as Q where the two arc cross each other. Join the points S and Q as well as R and Q .

- Set the compass to the radius of 5 cm and make an arc from the point Q.
- Set the compass to the radius of 4 cm and make an arc from the point S on the previous arc.

- Mark the point as P where the two arc cross each other.
- Join the points P and Q as well as P and S.

- You obtain the quadrilateral PQRS of the required measurements.

Special Quadrilaterals

Construction of a Quadrilateral When Other Special Properties Are Known

Construct a rhombus $P Q R S$ with diagonals $P R=5.2 \mathrm{~cm}$ and $Q S=6.4 \mathrm{~cm}$
[Make a rough figure for your reference]
Note: Diagonals of a rhombus are perpendicular bisectors of each other.

Steps of construction of the Rhombus:

Step 1: Draw a line segment PR of length 5.2 cm .
Step 2: Draw the perpendicular bisector of PR. Name the point O, where the perpendicular bisector of PR and PR intersect.

Step 3: With O as center and radius equal to 3.2 cm cut arcs on both sides of the perpendicular bisector. Name them as Q and S.

Step 4: Join, PQ, QR, RS, and PS.

Introduction to Practical Geometry

Number of measurements necessary for construction of a unique Quadrilateral

To draw a unique quadrilateral, we need at least five measurements of sides and angles. However, it is not necessary that we will get a unique quadrilateral if we have the measurements of any five combinations of sides and angles.

For example, a unique quadrilateral can be drawn if we are given the measurement of four sides and one diagonal of a quadrilateral.

However, a unique quadrilateral will not be drawn if we are given the measurement of two diagonals and three angles of a quadrilateral.\}

Important Questions

Multiple Choice Questions:

Question 1. Sum of all interior angles of a polygon with (n) sides is given by
(a) $(n-2) \times 180^{\circ}$
(b) $n-2 \times 180^{\circ}$
(c) $(n+2) \times 180^{\circ}$
(d) $(\mathrm{n}+2) \times 180^{\circ}$

Question 2. Polygons that have no portions of their diagonals in their exteriors are called
(a) triangles
(b) convex
(c) concave
(d) squares

Question 3. What is the number of sides in Hexagon?
(a) 4
(b) 7
(c) 6
(d) 5

Question 4. A parallelogram must be a rectangle if its diagonals
(a) bisect the angles to which they are drawn
(b) are perpendicular to each other
(c) bisect each other
(d) are congruent

Question 5. Diagonals of a rectangle:
(a) equal to each other
(b) not equal
(c) one is double of the other
(d) none of these

Question 6. A simple closed curve made up of only \qquad is called a polygon.
(a) lines
(b) curves
(c) closed curves
(d) line segments

Question 7. To construct a quadrilateral uniquely, it is necessary to know at least \qquad of its parts.
(a) 5
(b) 4
(c) 3
(d) 2

Question 8. All the angles of a regular polygon are of \qquad
(a) 90°
(b) 60°
(c) equal length
(d) equal measure

Question 9. The diagonals of a square bisect each other at \qquad angle.
(a) acute
(b) right
(c) obtuse
(d) reflex

Question 10. The quadrilateral whose diagonals are equal and bisect each other at right angle is \qquad
(a) Triangle
(b) Square
(c) Rhombus
(d) None of these

Very Short Questions:

Short Questions:

Long Questions:

1. Construct a quadrilateral $P Q R S$, given that $Q R=4.5 \mathrm{~cm}, P S=5.5 \mathrm{~cm}, R S=5 \mathrm{~cm}$ and the diagonal $P R=5.5 \mathrm{~cm}$ and diagonal $\mathrm{SQ}=7 \mathrm{~cm}$.
2. Construct a quadrilateral $A B C D$ in which $A B=4 \mathrm{~cm}, B C=3.5 \mathrm{~cm}, C D=5 \mathrm{~cm}, A D$ $=5.5 \mathrm{~cm}$ and $\angle B=75^{\circ}$.
3. Construct a square whose side is 5 cm .
4. Construct a rhombus $A B C D$ in which $A B=5.8 \mathrm{~cm}$ and $A C=7.5 \mathrm{~cm}$.
5. Construct a rhombus whose diagonals are 6 cm and 8 cm .
6. Construct a rectangle whose diagonal is 5 cm and the angle between the diagonal is 50°.
7. Construct a quadrilateral $A B C D$ in which $B C=4 \mathrm{~cm}, \angle B=60^{\circ}, \angle C=135^{\circ}, A B=5$ cm and $\angle A=90^{\circ}$.
8. Construct a parallelogram $A B C D$ in which $A B=5.5 \mathrm{~cm}, A C=7 \mathrm{~cm}$ and $B D=8$ cm.
9. Construct a rhombus PAIR, given that $P A=6 \mathrm{~cm}$ and angle $\angle A=110^{\circ}$.

Answer Key-

Multiple Choice Questions:

1. (a) $(n-2) \times 180^{\circ}$
2. (b) convex
3. (c) 6
4. (d) are congruent
5. (a) equal to each other
6. (d) line segments
7. (a) 5
8. (d) equal measure
9. (b) right
10. (b) Square

Very Short Answer :

Short Answer :

Long Answer :

1.

Construction:

Step I: Draw QR = 4.5 cm .
Step II: Draw an arc with centre R and radius 5 cm .
Step III: Draw another arc with centre Q and radius 7 cm to meet the previous arc at S.

Step IV: Join RS and QS.
Step V: Draw two arcs with centre S and R and radius 5.5 cm each to meet each other at P.

Step VI: Join RP, SP and PQ.
Thus PQRS is the required quadrilateral.
2.

Construction:
Step I: Draw AB = 4 cm.
Step II: Draw an angle of 75° at B and cut $B C=3.5 \mathrm{~cm}$.
Step III: Draw an arc with centre C and radius 5 cm .
Step IV: Draw another arc with centre A and radius 5.5 cm to meet the previous arc at D.

Step V: Join CD and AD.
Thus $A B C D$ is the required quadrilateral.
3.

(Rough sketch)

(Fair figure)

Construction:

Step I: Draw $A B=5 \mathrm{~cm}$.
Step II: Draw an angle of 90° at B and cut $\mathrm{BC}=5 \mathrm{~cm}$.
Step III: Draw two arcs with centre A and C and same radii of 5 cm which meet each other at D.

Step IV: Join AD and CD.
Thus, $A B C D$ is the required square.
4.

Construction:
Step I: Draw AB $=5.8 \mathrm{~cm}$.
Step II: Draw an arc with centre B and radius 5.8 cm .
Step III: Draw another arc with centre A and radius 7.5 cm to meet the previous arc at C.

Step IV: Draw two arcs with centres A and C and of the same radius 5.8 cm to meet each other at D.

Step V: Join BC, AC, CD and AD.
Thus $A B C D$ is the required rhombus.
5.

(Rough sketch)

(Fair figure)

Construction:
Step I: Draw SQ = 8 cm.
Step II: Draw a right bisector of SQ at O.
Step III: Draw two arcs with centre O and radius 3 cm each to cut the right bisector at P and R.

Step TV: Join PQ, QR, RS and SP.
Thus PQRS is the required rhombus.
6.

Construction:
Step I: Draw $A C=5 \mathrm{~cm}$.
Step II: Draw the right bisector of AC at O.
Step III: Draw an angle of 50° at O and product both sides.
Step IV: Draw two arcs with centre O and of the same radius 2.5 cm to cut at B and D.

Step V: Join $A B, B C, C D$ and $D A$.
Thus, $A B C D$ is the required rectangle.

Construction:
Step I: Draw AB = 5 cm .
Step II: Draw the angle of 60° at B and cut $B C=4 \mathrm{~cm}$.
Step III: Draw an angle of 135° at C and angle of 90° at A which meet each other at D .

Thus, $A B C D$ is the required quadrilateral.
8.

(Rough sketch)

Construction:
Step 1: Draw $A B=5.5 \mathrm{~cm}$.
Step II: Draw an arc with centre B and radius $\frac{8}{2} \mathrm{~cm}=4 \mathrm{~cm}$.
Step III: Draw another arc with centre A and radius $\frac{7}{2} \mathrm{~cm}=3.5 \mathrm{~cm}$ which cuts the previous arc at O.

Step IV: Join AO and produce to C such that $\mathrm{AO}=\mathrm{OC}$.
Step V: Join BO and produce to D such that $\mathrm{BO}=\mathrm{OD}$.
Step VI: Join BC, CD and AD.
Thus ABCD is the required parallelogram.
9.

Since in a rhombus, all sides are equal, so $P A=A I=I R=R P=6 \mathrm{~cm}$

Also, rhombus is a parallelogram
so, adjacent angle, $\angle \mathrm{I}=180^{\circ}-110^{\circ}=70^{\circ}$

Steps of construction
Step I. Draw AI = 6 cm
Step II. Draw ray $\overline{\mathrm{AX}}$ such that $\angle I A X=110^{\circ}$ and draw $\overline{\mathrm{Y}}$ such that $\angle A I Y=70^{\circ}$.
Step III. With A and I as centres and radius 6 cm draw arcs intersecting $A X$ and IY at P and R respectively.

Step IV. Join PR.
Thus, PAIR is the required rhombus.

