MATHEMATICS

Chapter 11: Constructions

Constructions

To Construct an Angle Equal to a Given Angle

Given: Any $\angle P O Q$ and a point A
Required: To construct an angle at A equal to $\angle \mathrm{POQ}$
Steps of Construction:
i. With O as centre and any (suitable) radius, draw an arc to meet OP at R and OQ at S .
ii. Through A draw a line $A B$.
iii. Taking A as centre and same radius (as in step 1), draw an arc to meet $A B$ at D.
iv. Measure the segment RS with compasses.
v. With D as centre and radius equal to RS, draw an arc to meet the previous arc at E.
vi. Join $A E$ and produce it to C, then $\angle B A C$ is the required angle equal to $\angle P O Q$.

Linear Pair axiom

- If a ray stands on a line then the adjacent angles form a linear pair of angles.
- If two angles form a linear pair, then uncommon arms of both the angles form a straight line.

To Bisect a Given Angle

Given: Any $\angle P O Q$
Required: To bisect $\angle \mathrm{POQ}$.
Steps of Construction:
i. With O as centre and any (suitable) radius, draw an arc to meet OP at R and OQ at S .
ii. With R as centre and radius more than half of RS, draw an arc. Also, with S as centre and same radius draw another arc to meet the previous arc at T .
iii. Join OT and produce it, then OT is the required bisector of $\angle \mathrm{POQ}$.

To Construct some Specific Angles

To construct an angle of 60°
Steps of Construction:
i. Draw any line OP.
ii. With O as centre and any suitable radius, draw an arc to meet OP at R .
iii. With R as centre and same radius (as in step 2), draw an arc to meet the previous arc at S.
iv. Join $O S$ and produce it to Q, then $\angle P O Q=60^{\circ}$.

To construct an angle of 30°

Steps of Construction

i. Construct $\angle \mathrm{POQ}=60^{\circ}$.
ii. Bisect $\angle P O Q$. Let $O T$ be the bisector of $\angle P O Q$, then $\angle P O T=30^{\circ}$

To construct an angle of 120°

Steps of Construction:
i. Draw any line OP.
ii. With O as centre and any suitable radius, draw an arc to meet OP at R .
iii. With R as centre and same radius (as in step 2), draw an arc to meet the previous arc at T . With T as centre and same radius, draw another arc to cut the first arc at S .
iv. Join $O S$ and produce it to Q , then $\angle \mathrm{POQ}=120^{\circ}$.

To construct an angle of 90°
Steps of Construction:
i. Construct $\angle \mathrm{POQ}=60^{\circ}$
ii. Construct $\angle \mathrm{POV}=120^{\circ}$.
iii. Bisect $\angle Q O V$. Let $O U$ be the bisector of $\angle Q O V$, then $\angle P O U=90^{\circ}$.

To construct an angle of 45°
Steps of Construction:
i. Construct $\angle A O P=90^{\circ}$.
ii. Bisect $\angle A O P$.
iii. Let $O Q$ be the bisector of $\angle A O P$, then $\angle A O Q=45^{\circ}$

To Draw a Perpendicular Bisector of a Line Segment

Given: Any line segment PQ.
Required: To draw a perpendicular bisector of line segment PQ.
Steps of Construction:
i. With P as centre, take a length greater than half of $P Q$ and draw arcs one on each side of PQ.
ii. With Q as centre and same radius (as in step 1), draw two arcs on each side of PQ cutting the previous arcs at A and B .
iii. Join $A B$ to meet $P Q$ at M, then $A B$ bisects $P Q$ at M, and is perpendicular to $P Q$, Thus, $A B$ is the required perpendicular bisector of $P Q$.

Properties of a Perpendicular Bisector

- It divides AB into two equal halves or bisects it.
- It makes right angles with (or is perpendicular to) AB.
- Every point in the perpendicular bisector is equidistant from point A and B.

While working with practical geometry, you will often find the application of perpendicular bisectors; say when you are asked to draw an isosceles triangle, or when you have to determine the centre of a circle, etc. Below are the steps to construct a perpendicular
bisector of a line using a compass and a ruler.

How to Construct a Perpendicular Bisector?

You will require a ruler and compasses. The steps for the construction of a perpendicular bisector of a line segment are:

Step 1: Draw a line segment PQ.
Step 2: Adjust the compass with a length of a little more than half of the length of PQ.
Step 3: Place the compass pointer at point P and draw arcs above and below the line.

Step 4: Keeping the same length in the compass, place the compass pointer at point Q . Similarly, draw two arcs above and below the line keeping the compass pointer at Q .

Step 5: Mark the points where the opposite arcs cross as X and Y.

Step 6: Using a ruler, draw a line passing across X and Y.

The perpendicular bisector bisects PQ at a point J , that is, the length PJ is equal to JQ . And the angle between the two lines is 90 degrees.
Construction of a Triangle, given its Base, sum of the other two sides and one Base Angle

To construct $\triangle A B C$ in which base $B C, \angle B$ and sum $A C+A B$ of other two sides are given.
Steps of construction:
i. Draw the base $B C$ and at the point B, make an angle, say $X B C$ equal to the given angle.
ii. Cut a line segment $B D=A C+A B$ from the ray $B X$.
iii. Join DC and make angle DCY equal to angle BDC.
iv. Let CY intersect BX at A .
v. $A B C$ is the required triangle.

Alternate Method
Steps of construction:
i. Draw the base $B C$ and at the point B, make an angle, say $X B C$ equal to the given angle.
ii. Cut a line segment $B D=A C+A B$ from the ray $B X$.
iii. Draw perpendicular bisector $P Q$ of $C D$ to intersect $B D$ at a point A. Join $A C$. $A B C$ is the required triangle.

Construction of a Triangle, given its Base, difference of the other two sides and one Base

To construct $\triangle A B C$ when the base $B C$, a base angle B and the difference of other two sides $A B-A C$ or $A C-A B$ are given.

Case 1: When $A B>A C$ and $A B-A C$ is given
Steps of construction:
i. Draw the base $B C$ and at point B make an angle say $X B C$ equal to the given angle.
ii. Cut the line segment BD equal to $\mathrm{AB}-\mathrm{AC}$ from ray BX .
iii. Join DC and draw the perpendicular bisector, say PQ of DC. Let it intersect $B X$ at a point A. Join $A C$ Then, $A B C$ is the required triangle.

Case 1: When $A B<A C$ and $A C-A B$ is given Steps of Construction:
i. Draw the base $B C$ and at point B make an angle say $X B C$ equal to the given angle.
ii. Cut a line segment $B D$ equal to $A C-A B$ from the line $B X$ extended on opposite side of line segment BC.
iii. Join DC and draw the perpendicular bisector, say PQ of DC.
iv. Let $P Q$ intersect $B X$ at A. Join $A C$.

Then, $A B C$ is the required triangle.

Construction of a Triangle of given Perimeter and Base Angles

To construct a triangle $A B C$, when its perimeter, $A B+B C+C A$, and two base angles, $\angle B$ and $\angle C$, are given.

Steps of Construction:
i. Draw a line segment, say $X Y=B C+C A+A B$.
ii. Construct $\angle L X Y=\angle B$ and $\angle M Y X=\angle C$.
iii. Draw the bisectors of $\angle L X Y$ and $\angle M Y X$. Let these bisectors intersect at point A
iv. Draw a perpendicular bisector PQ of $A X$ and RS of AY.
v. Let $P Q$ intersect $X Y$ at B and $R S$ intersect $X Y$ at C.
vi. Join $A B$ and $A C$. Then, $A B C$ is the required triangle.

Class: 9th mathematics

Chapter-11: Constructions

Important Questions

Multiple Choice questions-

Question 1. If a, b and c are the lengths of the three sides of a triangle, then which of the following is true?
(a) $a+b<c$
(b) $a-b<c$
(c) $a+b=c$

Question 2. With the help of a ruler and compasses, which of the following is not possible to construct?
(a) 70°
(b) 60°
(c) 135°

Question 3. Which of the following sets of angles can be the angles of a triangle?
(a) $30^{\circ}, 60^{\circ}, 80^{\circ}$
(b) $40^{\circ}, 60^{\circ}, 70^{\circ}$
(c) $50^{\circ}, 30^{\circ}, 100^{\circ}$

Question 4. The construction of the triangle $A B C$ is possible if it is given that $B C=$ $4 \mathrm{~cm}, \angle C=60^{\circ}$ and the difference of $A B$ and $A C$ is
(a) 3.5 cm
(b) 4.5 cm
(c) 3 cm
(d) 2.5 cm

Question 5. Which of the following can be the length of $B C$ required to construct the triangle $A B C$ such that $A C=7.4 \mathrm{~cm}$ and $A B=5 \mathrm{~cm}$?
(a) 3.5 cm
(b) 2.1 cm
(c) 4.7 cm

Question 6. If we want to construct a triangle, given its perimeter, then we need to know:
(a) Sum of two sides of triangle
(b) Difference between two sides of triangle
(c) One base angles
(d) Two base angles

Question 7. To construct a bisector of a given angle, we need:
(a) A ruler
(b) A compass
(c) A protractor
(d) Both ruler and compass

Question 8. Which of the following set of lengths can be the sides of a triangle?
(a) $2 \mathrm{~cm}, 4 \mathrm{~cm}, 1.9 \mathrm{~cm}$
(b) $1.6 \mathrm{~cm}, 3.7 \mathrm{~cm}, 5.3 \mathrm{~cm}$
(c) $5.5 \mathrm{~cm}, 6.5 \mathrm{~cm}, 8.9 \mathrm{~cm}$
(d) None of the above

Question 9. Which of these angles cannot be constructed using ruler and compasses?
(a) 120
(b) 60
(c) 140
(d) 135

Question 10. Which of the following angles can be constructed using ruler and compasses?
(a) 35
(b) 45
(c) 95
(d) 55

Very Short:

1. Draw a line segment $A B=8 \mathrm{~cm}$. Draw $\frac{1}{3}$ part of it. Measure the length of $\frac{1}{3}$ part of $A B$.
2. Why we cannot construct a $\triangle A B C$, if $\angle A=60^{\circ}, A B=6 \mathrm{~cm}$ and $A C+B C=5 \mathrm{~cm}$ but construction of $\triangle A B C$ is possible if $\angle A=60^{\circ}, A B=6 \mathrm{~cm}$ and $A C-B C=5 \mathrm{~cm}$?
3. Construct an angle of 90° at the initial point of the given ray.
4. Draw a straight angle. Using compass bisect it. Name the angles obtained.
5. Draw any reflex angle. Bisect it using compass. Name the angles so obtained.

Short Questions:

1. Construct a triangle whose sides are in the ratio $2: 3: 4$ and whose perimeter is 18 cm .
2. Construct a ? $A B C$ with $B C=8 \mathrm{~cm}$? $B=45^{\circ}$ and $A B-A C=3.1 \mathrm{~cm}$.
3. Construct a $\triangle A B C$ such that $B C=3.2 \mathrm{~cm}, \angle B=45^{\circ}$ and $A C-A B=2.1 \mathrm{~cm}$.
4. Draw a line segment $Q R=5 \mathrm{~cm}$. Construct perpendiculars at point Q and R to it. Name them as QX and RY respectively. Are they both parallel?
5. Construct an isosceles triangle whose two equal sides measure 6 cm each and whose base is 5 cm . Draw the perpendicular bisector of its base and show that it passes through the opposite vertex.

Long Questions:

1. Construct a triangle $A B C$ in which $B C=4.7 \mathrm{~cm}, A B+A C=8.2 \mathrm{~cm}$ and $\angle C=60^{\circ}$
2. Construct $\triangle X Y Z$, if its perimeter is 14 cm , one side of length 5 cm and $\angle X=45^{\circ}$
3. To construct a triangle, with perimeter 10 cm and base angles 60° and 45°
4. Construct an equilateral triangle whose altitude is 6 cm long
5. Construct a rhombus whose diagonals are 8 cm and 6 cm long. Measure the length of each side of the rhombus

Assertion and Reason Questions-

1. In these questions, a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.
a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
c) Assertion is correct statement but reason is wrong statement.
d) Assertion is wrong statement but reason is correct statement.

Assertion: a, b and c are the lengths of three sides of a triangle, then $a+b>c$.
Reason: The sum of two sides of a triangle is always greater than the third side.
2. In these questions, a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.
a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
c) Assertion is correct statement but reason is wrong statement.
d) Assertion is wrong statement but reason is correct statement.

Assertion: The side lengths $4 \mathrm{~cm}, 4 \mathrm{~cm}$ and 4 cm can be sides of equilateral triangle.
Reason: Equilateral triangle has all its three sides equal.

Answer Key:

MCQ:

1. (b) $a-b<c$
2. (a) 70°
3. (c) $50^{\circ}, 30^{\circ}, 100^{\circ}$
4. (b) 4.5 cm
5. (b) 2.1 cm
6. (c) One base angles
7. (d) Both ruler and compass
8. (c) $5.5 \mathrm{~cm}, 6.5 \mathrm{~cm}, 8.9 \mathrm{~cm}$
9. (c) 140
10.(b) 45

Very Short Answer:

1.

Steps of Construction:

- Draw a line segment $A B=8 \mathrm{~cm}$.
- Draw its perpendicular bisector and let it intersect $A B$ in M.
- Draw the perpendicular bisector of $M B$ and let it intersect $A B$ in N. Thus, $A N=$ 13 of $A B=6 \mathrm{~cm}$.

1. We know that, by triangle inequality property, construction of triangle is possible if sum of two sides of a triangle is greater than the third side. Here, $A C+B C=5 \mathrm{~cm}$ which is less than $A B(6 \mathrm{~cm})$ Thus, $\triangle A B C$ is not possible.
Also, by triangle inequality property, construction of triangle is possible, if difference of two sides of a triangle is less than the third side
Here, $A C-B C=5 \mathrm{~cm}$, which is less than $A B(6 \mathrm{~cm})$
Thus, $\triangle A B C$ is possible.
2.

Steps of Construction :

1. Draw a ray OA.
2. With O as centre and any convenient radius, draw an arc, cutting $O A$ at P.
3. With P as centre and same radius, draw an arc cutting the arc drawn in step 2 at Q.
4. With Q as centre and the same radius as in steps 2 and 3 , draw an arc, cutting the arc drawn in step 2 at R.
5. With Q and R as centres and same radius, draw two arcs, cutting each other in S.
6. Join $O S$ and produce to B. Thus, $\angle A O B$ is the required angle of 90°
7.

Steps of Construction:

- Draw any straight angle (say $\angle A O C$).
- Bisect $\angle A O C$ and join BO.
- $\angle A O B$ is the required bisector of straight angle AOC.

5.

Steps of Construction:

a. Let $\angle A O B$ be any reflex angle.
b. With O as Centre and any convenient radius, draw an arc cutting OA in P and OB in Q .
c. With P and Q as centers, draw two arcs of radius little more than half of it and let they intersect each other in C. Join OC. Thus, OC is the required bisector. Angles so obtained are $\angle A O C$ and $\angle C O B$.

Short Answer:

Steps of Construction:

- Draw a line segment $A B=18 \mathrm{~cm}$.
- At A, construct an acute angle $\angle B A X\left(<90^{\circ}\right)$.
- Mark 9 points on $A X$, such that ${A A_{1}}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}=A_{5} A_{6}$
- $=A_{6} A_{7}=A_{7} A_{8}=A_{8} A_{9}$.
- Join $A 9 B$.

CONSTRUCTIONS

- From A_{2} and A_{5}, draw $A_{2} M| | A_{5} N| | A_{9} B$, intersecting $A B$ in M and N respectively.
- With M as Centre and radius AM, draw an arc.
- With N as Centre and radius NB, draw another arc intersecting the previous arc at L.
- Join LM and LN. Thus, $\Delta \mathrm{LMN}$ is the required triangle.

Ans: 2.

Steps of Construction:

- Draw any line segment $B C=8 \mathrm{~cm}$.
- At B, construct an angle $\angle C B X=45^{\circ}$.
- From $B X$, cut off $B D=3.1 \mathrm{~cm}$.
- Join DC.
- Draw the perpendicular bisector ' p ' of DC and let it intersect BX in A.
- Join $A C$. Thus, $\triangle A B C$ is the required triangle.

Ans: 3.

Steps of Construction:

- Draw a line segment $B C=3.2 \mathrm{~cm}$.
- At B, construct an angle $\angle C B X=45^{\circ}$ and produce it to point X^{\prime}.
- Cut-off $B D=2.1 \mathrm{~cm}$ and join CD.
- Draw the perpendicular bisector of $C D$ and let it intersect $X^{\prime} B X$ in A.
- Join $A C$. Thus, $\triangle A B C$ is the required triangle.

Ans: 4.

Steps of Construction:

- Draw a line segment $Q R=5 \mathrm{~cm}$.
- With Q as Centre, construct an angle of 90° and let this line through Q is $Q X$.
- With R as Centre, construct an angle of 90° and let this line through R is RY. Yes, the perpendicular lines QX and RY are parallel.

Ans: 5.

Steps of Construction:

- Draw a line segment $A B=5 \mathrm{~cm}$.
- With A and B as centers, draw two arcs of radius 6 cm and let they intersect each other in C.
- Join $A C$ and $B C$ to get $\triangle A B C$.
- With A and B as canters, draw two arcs of radius little more than half of $A B$. Let they intersect each other in P and Q. Join PQ and produce, to pass through C.

Long Answer:

Ans: 1

Given: In $\triangle A B C, B C=4.7 \mathrm{~cm}, A B+A C=8.2 \mathrm{~cm}$ and $\angle C=60^{\circ}$.
Required: To construct $\triangle A B C$.

Steps of Construction:

- Draw BC $=4.7 \mathrm{~cm}$.
- Draw

CONSTRUCTIONS

- From ray CX, cut off $C D=8.2 \mathrm{~cm}$.
- Join BD.
- Draw the perpendicular bisector of BD meeting CD at A .
- Join $A B$ to obtain the required triangle $A B C$.

Justification:

$\because A$ lies on the perpendicular bisector of $B D$, therefore, $A B=A D$
Now, CD $=8.2 \mathrm{~cm}$
$\Rightarrow A C+A D=8.2 \mathrm{~cm}$
$\Rightarrow A C+A B=8.2 \mathrm{~cm}$
Ans: 2.

Here, perimeter of $\triangle X Y Z=14 \mathrm{~cm}$ and one side $X Y=5 \mathrm{~cm}$
$\therefore Y Z+X Z=14-5=9 \mathrm{~cm}$ and $\angle X=45^{\circ}$.

Steps of Construction:

- Draw a line segment $X Y=5 \mathrm{~cm}$.
- Construct an $\angle Y X A=45^{\circ}$ with the help of compass and ruler.
- From ray $X A$, cut off $X B=9 \mathrm{~cm}$.
- Join BY.
- Draw perpendicular bisector of BY and let it intersect $X B$ in Z.
- Join ZY. Thus, $\triangle X Y Z$ is the required triangle.

Ans: 3.

Given: In $\triangle A B C$,
$A B+B C+C A=10 \mathrm{~cm}, \angle B=60^{\circ}$ and $\angle C=45^{\circ}$.
Required: To construct $\triangle A B C$.

Steps of Construction:

- Draw DE = 10cm.
- At D, construct $\angle E D P=5$ of $60^{\circ}=30^{\circ}$ and at E, construct $D E Q=1$ of $450=$ 22°
- Let DP and EQ meet at A.
- Draw perpendicular bisector of $A D$ to meet $D E$ at B.
- Draw perpendicular bisector of $A E$ to meet $D E$ at C.
- Join $A B$ and $A C$. Thus, $A B C$ is the required triangle.

Ans: 4.

Steps of Construction:

- Draw a line PQ and take any point S on it.
- Construct the perpendicular SR on PQ.
- From SR, cut a line segment $S A=6 \mathrm{~cm}$.
- At the initial point A of the line segment $A S$, construct $\angle S A B=30^{\circ}$ and $\angle S A C=$ 30°.
- The arms $A B$ and $A C$ of the angles $\angle S A B$ and $\angle S A C$ meet $P Q$ in B and C respectively. Then, $\triangle A B C$ is the required equilateral triangle with altitude of length 6 cm .

Ans: 5.

Steps of Construction:

- Draw a line segment $P R=8 \mathrm{~cm}$.
- Draw the perpendicular bisector XY of the line segment PR. Let O be the point of intersection of $P R$ and $X Y$, so that O is the 8 cm mid-point of $P R$.
- From OX, cut a line segment $O S=3 \mathrm{~cm}$ and from OY, cut a line segment $O Q=$ 3cm.
- Join PS, $S R, R Q$ and $Q P$, then PQRS is the required rhombus.
- Measure the length of segments $P Q, Q R, R S$ and $S P$, each is found to be 5 cm long.

Assertion and Reason Answers-

1. a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
2. a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
