MATHEMATICS

Chapter 11: Constructions

Constructions

1. To divide a line segment internally in a given ratio $m: n$, where both m and n are positive integers, we follow the steps given below:

Step 1: Draw a line segment $A B$ of given length by using a ruler.
Step 2: Draw any ray $A X$ making an acute angle with $A B$.
Step 3: Along $A X$ mark off $(m+n)$ points $A_{1}, A_{2}, \ldots A_{m-1}, A_{m+1}, \ldots, A_{m+n}$, such that $A A_{1}=$ $A_{1} A_{2}=A_{m+n-1} A_{m+n}$.

Step 4: Join $B A_{m+n}$
Step 5: Through the point $A m$, draw a line parallel to $A m+n B$ by making an angle equal to $\angle A A_{m+n} B$ at A_{m}, intersecting $A B$ at point P.

The point P so obtained is the required point which divides $A B$ internally in the ratio $m: n$.

Justification

In $\triangle A B A_{m+n}$, we observe that $A_{m} P$ is parallel to $A_{m+n} B$. Therefore, by Basic Proportionality theorem, we have:
$\frac{\mathrm{AA}_{m}}{\mathrm{~A}_{\mathrm{m}} \mathrm{A}_{\mathrm{m}+\mathrm{n}}}=\frac{\mathrm{AP}}{\mathrm{PB}}$
$=\frac{A P}{P B}=\frac{m}{n}\left[\because \frac{A A_{m}}{A_{m} A_{m+n}}=\frac{m}{n}\right.$, by construction $]$
$=\mathrm{AP}: \mathrm{PB}=\mathrm{m}: \mathrm{n}$
Hence, P divides $A B$ in the ratio m : n.

Bisecting a Line Segment

Step 1: With a radius of more than half the length of the line segment, draw arcs centred at either end of the line segment so that they intersect on either side of the line segment.

Step 2: Join the points of intersection. The line segment is bisected by the line segment joining the points of intersection.

$P Q$ is the perpendicular bisector of $A B$
2. Alternative method to divide a line segment internally in a given ratio $\mathbf{m}: \mathbf{n}$ Example Find the point C such that it divides $B A$ in ratio 2:3

Steps of Construction:

- Draw any ray XA making an acute angle with BA.
- Draw a ray YB parallel to $X A$ by making $\angle Y B A$ equal to $\angle X A B$.
- Locate the points $A 1, A 2, A 3(m=3)$ on $A X$ and $B 1, B 2(n=2)$ on $B Y$ such that $A A 1=$ $A 1 A 2=A 2 A 3=B B 1=B 1 B 2$.
- Join $A 3 B 2$. Let it intersect $A B$ at a point C Then $B C: C A=2: 3$

Justification

Here $\triangle B B_{2} C \sim A A_{3} C$...AA test
$\frac{\mathrm{BB}_{2}}{\mathrm{AA}_{3}}=\frac{\mathrm{BC}}{\mathrm{AC}} \ldots \ldots$ (c.p.s.t.)
$\frac{2}{3}=\frac{\mathrm{BC}}{\mathrm{AC}}$
3. The ratio of the sides of the triangle to be constructed with the corresponding sides of the given triangle is known as a scale factor. The scale factor may be less or greater than 1.
4. If the scale factor is less than 1, then the new figure will be smaller in comparison to the given figure.
5. If the scale factor is greater than 1, then the new figure will be bigger in comparison to the given figure.

Construction of Triangle Similar to given Triangle

Consider a triangle $A B C$. Let us construct a triangle similar to $\triangle A B C$ such that each of its sides is || of $\left(\frac{m}{n}\right)^{\text {th }}$ the corresponding sides of ($A B C$.

Steps of constructions when $\mathbf{m}<\mathbf{n}$:

Step 1: Construct the given triangle $A B C$ by using the given data.
Step 2: Take any one of the three side of the given triangle as base. Let $A B$ be the base of the given triangle.

Step 3: At one end, say A, of base $A B$. Construct an acute angle ? $B A X$ below the base $A B$.
Step 4: Along $A X$ mark off n points $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ such that

$$
A A_{1}=A_{1} A_{2}=\ldots \ldots \ldots=A_{n-1} A_{n}
$$

Step 5: Join $A_{n} B$
Step 6: Draw AmB' parallel to AnB which meets $A B$ at B^{\prime}.
Step 7: From B^{\prime} draw $B^{\prime} C^{\prime}| | B C$ meeting $A C$ at C^{\prime}.
Triangle $A B^{\prime} C^{\prime}$ is the required triangle each of whose sides is $\left(\frac{m}{n}\right)^{\text {th }}$ of the corresponding side of $\triangle A B C$.

Justification

Since $A_{m} B^{\prime}| | A_{n} B$. Therefore
$\frac{A B \prime}{B^{\prime} / B}=\frac{A A_{m}}{A_{m} A_{n}}$ [by basic proportionality theorem]
$\Rightarrow \frac{\mathrm{AB}^{\prime}}{\mathrm{B}^{\prime} \mathrm{B}}=\frac{\mathrm{m}}{\mathrm{n}-\mathrm{m}}$
$\Rightarrow \frac{\mathrm{B}^{\prime} \mathrm{B}}{\mathrm{AB}^{\prime}}=\frac{\mathrm{n}-\mathrm{m}}{\mathrm{m}}$
Now, $\frac{\mathrm{AB}}{\mathrm{AB}^{\prime}}=\frac{\mathrm{AB}^{\prime}+\mathrm{B}^{\prime} \mathrm{B}}{\mathrm{AB} \prime}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{AB}^{\prime}}=1+\frac{\mathrm{B}^{\prime} \mathrm{B}}{\mathrm{AB}^{\prime}}=1+\frac{\mathrm{n}-\mathrm{m}}{\mathrm{m}}+\frac{\mathrm{n}}{\mathrm{m}}$
$\Rightarrow \frac{\mathrm{AB}^{\prime}}{\mathrm{AB}}=\frac{\mathrm{m}}{\mathrm{n}}$
In triangles $A B C$ and $A B^{\prime} C^{\prime}$, we have
$\angle B A C=\angle B^{\prime} A C^{\prime}$
And $\angle A B C=\angle A B^{\prime} C^{\prime}$
So, by AA similarity criterion, we have
$\triangle A^{\prime} C^{\prime} \sim \triangle A B C$
$\Rightarrow \frac{\mathrm{AB}^{\prime}}{\mathrm{AB}}=\frac{\mathrm{B}^{\prime} \mathrm{C}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{AC}^{\prime}}{\mathrm{AC}}$
$\Rightarrow \frac{\mathrm{AB}^{\prime}}{\mathrm{AB}}=\frac{\mathrm{B}^{\prime} \mathrm{C}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{AC}^{\prime}}{\mathrm{AC}}=\frac{\mathrm{m}}{\mathrm{n}}$

Steps of construction when $\mathbf{m}>\mathrm{n}$:

Step 1: Construct the given triangle by using the given data.
Step 2: Take any one of the three sides of the given triangle and consider it as the base. Let $A B$ be the base of the given triangle.

Step 3: At one end, say A, of base $A B$. Construct an acute angle $\angle B A X$ below base $A B$ i.e., on the opposite side of the vertex C .

Step 4: Along AX mark off m (large of m and n) points $A 1, A 2, A 3, \ldots A m$ of $A X$ such that $\mathrm{AA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=$ \qquad $=A_{m-1} A_{m}$.

Step 5: Join $A_{n} B$ to B and draw a line through A_{m} parallel to $A_{n} B$, intersecting the extended line segment $A B$ at B^{\prime}.

Step 6: Draw a line through B^{\prime} parallel to $B C$ intersecting the extended line segment $A C$ at C^{\prime}. Step 7: $\Delta A B^{\prime} C^{\prime}$ so obtained is the required triangle.

Justification

Consider triangle $A B C$ and $A B^{\prime} C^{\prime}$. We have:
$\angle B A C=\angle B^{\prime} A C^{\prime}$
$\angle A B C=\angle A B^{\prime} C^{\prime}$
So, by AA similarity criterion,
$\triangle \mathrm{ABC} \sim \triangle \mathrm{AB}{ }^{\prime} \mathrm{C}^{\prime}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{AB}^{\prime}}=\frac{\mathrm{BC}}{\mathrm{B}^{\prime} \mathrm{C}^{\prime}}=\frac{\mathrm{AC}}{\mathrm{AC}^{\prime}}$
$\Delta A A_{m} B^{\prime}, A_{n} B| | A_{m} B^{\prime}$
$\therefore \frac{A B}{{B B^{\prime}}^{\prime}}=\frac{A A_{n}}{A_{n} A_{m}}$
$\Rightarrow \frac{\mathrm{BB}^{\prime}}{\mathrm{AB}}=\frac{\mathrm{A}_{\mathrm{n}} \mathrm{A}_{\mathrm{m}}}{\mathrm{AA} \mathrm{A}_{\mathrm{n}}}$
$\Rightarrow \frac{\mathrm{BB}^{\prime}}{\mathrm{AB}}=\frac{m-n}{n}$
$\Rightarrow \frac{\mathrm{AB}^{\prime}-\mathrm{AB}}{\mathrm{AB}}=\frac{m-n}{n}$
$\Rightarrow \frac{\mathrm{AB}^{\prime}}{\mathrm{AB}}-1=\frac{m-n}{n}$
$\Rightarrow \frac{\mathrm{AB}^{\prime}}{\mathrm{AB}}=\frac{m}{n}$
From (i) and (ii), we have

$$
\Rightarrow \frac{\mathrm{AB}^{\prime}}{\mathrm{AB}}=\frac{\mathrm{B}^{\prime} \mathrm{C}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{AC}^{\prime}}{\mathrm{AC}}=\frac{\mathrm{m}}{\mathrm{n}}
$$

The tangent to a circle is a line that intersects the circle at exactly one point.
Tangent to a circle is perpendicular to the radius through the point of contact.

Construction of Triangle to a Circle from a point outside the Circle

Construction of a tangent to a circle from a point outside the circle, when its centre is known

The steps of constructions are as follows:
Step 1: Join the centre O of the circle to the point P.
Step 2: Draw perpendicular bisector of OP intersecting OP at Q.
Step 3: With Q as centre and radius OQ , draw a circle. This circle has OP as its diameter.
Step 4: Let this circle intersect the first circle at two points T and T^{\prime}. Join PT and P T'.
PT and $P T^{\prime}$ are the two tangents to the given circle from the point P.

Justification

Join OT and OT'

It can be seen that $\angle \mathrm{PTO}$ is an angle in the semi-circle. We know that angle in a semi-circle is a right angle.
$\therefore \angle \mathrm{PTO}=90^{\circ}$
$\Rightarrow \mathrm{OT} \perp \mathrm{PT}$
Since OT is the radius of the circle, PT has to be a tangent of the circle. Similarly, PT ' is a tangent of the circle.

Number of Tangents to a circle from a given point

If the point is in an interior region of the circle, any line through that point will be a secant. So, in this case, there is no tangent to the circle.

$A B$ is a secant drawn through the point S
When the point lies on the circle, there is accurately only one tangent to a circle.

$P Q$ is the tangent touching the circle at A
When the point lies outside of the circle, there are exactly two tangents to a circle.

PT1 and PT2 are tangents touching the circle at T1 and T2
Drawing tangents to a circle from a point outside the circle

To construct the tangents to a circle from a point outside it.
Consider a circle with centre O and let P be the exterior point from which the tangents to be drawn.

Step 1: Join the PO and bisect it. Let M be the midpoint of PO.
Step 2: Taking M as the centre and $M O$ (or $M P$) as radius, draw a circle. Let it intersect the given circle at the points Q and R.

Step 3: Join PQ and PR
Step 4:PQ and $P R$ are the required tangents to the circle.

Important Questions

Multiple Choice questions-

1. To divide a line segment $A B$ in the ratio $p: q$ (p, q are positive integers), draw a ray $A X$ so that $\angle B A X$ is an acute angle and then mark points on ray $A X$ at equal distances such that the minimum number of these points is
(a) greater of p and q
(b) $p+q$
(c) $p+q-1$
(d) $p q$
2. To draw a pair of tangents to a circle which are inclined to each other at an angle of 35°. It is required to draw tangents at the end points of those two radii of the circle, the angle between which is
(a) 105°
(b) 70°
(c) 140°
(d) 145°
3. To divide a line segment $A B$ in the ratio $5: 7$, first a ray $A X$ is drawn so that $\angle B A X$ is an acute angle and then at equal distances points are marked on the ray $A X$ such that the minimum number of these points is
(a) 8
(b) 10
(c) 11
(d) 12
4. To divide a line segment $A B$ in the ratio 4:7, ray $A X$ is drawn first such that $\angle B A X$ is an acute angle and then points $A_{1}, A_{2}, A_{3}, \ldots$. are located at equal distances on the ray $A X$ and the point B is joined to
(a) A_{12}
(b) A_{11}
(c) A_{10}
(d) A_{9}
5. To divide a line segment $A B$ in the ratio $5: 6$, draw a ray $A X$ such that $\angle B A X$ is an acute angle, then draw a ray $B 4$ parallel to $A X$ and the points $A_{1}, A_{2}, A_{3}, \ldots . .$. . and B_{1}, B_{2}, B_{3}, \ldots. are located at equal distances on ray $A X$ and $B 4$, respectively. Then the points joined are:
(a) A_{5} and B_{6}
(b) A_{6} and B_{5}
(c) A_{4} and B_{5}
(d) A_{5} and B_{4}
6. To construct a triangle similar to a given $\triangle A B C$ with its sides $\frac{3}{7}$ of the corresponding sides of $\triangle A B C$, first draw a ray $B X$ such that $\angle C B X$ is an acute angle and X lies on the opposite side of A with respect to $B C$. Then locate points B_{1}, B_{2}, B_{3}, on $B X$ at equal distances and next step is to join
(a) B_{10} to C
(b) B_{3} to C
(c) B_{7} to C
(d) B_{4} to C
7. To construct a triangle similar to a given $\triangle A B C$ with its sides $\frac{8}{5}$ of the corresponding sides of $\triangle A B C$ draw a ray $B X$ such that $\angle C B X$ is an acute angle and X is on the opposite side of A with respect to $B C$. Then minimum number of points to be located at equal distances on ray $B X$ is
(a) 5
(b) 8
(c) 13
(d) 3
8. To draw a pair of tangents to a circle which are inclined to each other at an angle of 60°, it is required to draw tangents at end points of those two radii of the circle, the angle between them should be:
(a) 135°
(b) 90°
(c) 60°
(d) 120°
9. To construct a pair of tangents to a circle at an angle of 60° to each other, it is needed to draw tangents at endpoints of those two radii of the circle, the angle between them should be:
(a) 100°
(b) 90°
(c) 180°
(d) 120°
10. A pair of tangents can be constructed from a point P to a circle of radius 3.5 cm situated at a distance of \qquad from the centre.
(a) 3.5 cm
(b) 2.5 cm
(c) 5 cm
(d) 2 cm

Very Short Questions:

1. Is construction of a triangle with sides $8 \mathrm{~cm}, 4 \mathrm{~cm}, 4 \mathrm{~cm}$ possible?
2. To divide the line segment $A B$ in the ratio $5: 6$, draw a ray $A X$ such that $\angle B A X$ is an acute angle, then draw a ray $B Y$ parallel to $A X$ and the point A_{1}, $A_{2}, A_{3} \ldots$ and $B_{1}, B_{2}, B_{3} \ldots$ are located at equal distances on ray $A X$ and $B Y$ respectively. Then which points should be joined?
3. To draw a pair of tangents to a circle which are inclined to each other at an angle of 60°, it is required to draw tangents at end points of those two radii of the circle. What should be the angle between them?
4. In Fig. by what ratio does P divide $A B$ internally.

5. Given a triangle with side $A B=8 \mathrm{~cm}$. To get a line segment $A B^{\prime}=2$ of $A B$, in what ratio will line segment $A B$ be divided?
6. Draw a line segment of length 6 cm . Using compasses and ruler, find a point P on it which divides it in the ratio $3: 4$.
7. Draw a line segment $A B$ of length 7 cm . Using ruler and compasses, find a point P on AB such that $\frac{A P}{A B}=\frac{3}{5}$.

Short Questions :

1. Draw a triangle $A B C$ in which $A B=5 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Then construct a triangle whose sides are 57 times the corresponding sides of $\triangle A B C$.
2. Construct a triangle with sides $5 \mathrm{~cm}, 5.5 \mathrm{~cm}$ and 6.5 cm . Now construct another triangle, whose sides are $\frac{3}{5}$ times the corresponding sides of the given triangle.
3. Construct a right triangle in which the sides, (other than the hypotenuse) are of length 6 cm and 8 cm . Then construct another triangle, whose sides are $\frac{3}{5}$ times the corresponding sides of the given triangle.
4. Draw a triangle $P Q R$ such that $P Q=5 \mathrm{~cm}, \angle P=120^{\circ}$ and $P R=6 \mathrm{~cm}$. Construct another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of $\triangle P Q R$.
5. Draw a triangle $A B C$ with $B C=7 \mathrm{~cm}, \angle B=45^{\circ}$ and $\angle C=60^{\circ}$. Then construct another triangle, whose sides are $\frac{3}{5}$ times the corresponding sides of $\triangle A B C$.
6. Construct a triangle with sides $5 \mathrm{~cm}, 4 \mathrm{~cm}$ and 6 cm . Then construct another triangle whose sides are $\frac{2}{3}$ times the corresponding sides of first triangle.
7. Draw a pair of tangents to a circle of radius 3 cm , which are inclined to each other at an angle of 60°.
8. Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm .
9. Draw a pair of tangents to a circle of radius 4.5 cm , which are inclined to each other at an angle of 45°.
10. Draw two tangents to a circle of radius 3.5 cm , from a point P at a distance of 6.2 cm from its centre.

Long Questions :

1. Draw a triangle $A B C$ with side $B C=7 \mathrm{~cm}, \angle B=45^{\circ}$ and $\triangle A=105^{\circ}$. Then construct a triangle whose sides are $\frac{3}{5}$ times the corresponding sides of $\triangle A B C$.
2. Draw a triangle $A B C$ with side $B C=6 \mathrm{~cm}, \angle C=30^{\circ}$ and $\angle A=105^{\circ}$. Then construct another triangle whose sides are $\frac{2}{3}$ times the corresponding sides of $\triangle \mathrm{ABC}$.
3. Draw a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm . Then construct another triangle whose sides are $\frac{2}{3}$ times the corresponding sides of the first triangle.
4. Construct an isosceles triangle whose base is 6 cm and altitude 4 cm . Then construct another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of the isosceles triangle.
5. Draw a line segment $A B$ of length 7 cm . Taking A as centre, draw a circle of radius 3 cm and taking B as centre, draw another circle of radius 2 cm . Construct tangents to each circle from the centre of the other circle.
6. Construct a $\triangle A B C$ in which $A B=6 \mathrm{~cm}, \angle A=30^{\circ}$ and $\triangle B=60^{\circ}$. Construct another $\triangle A B^{\prime} C^{\prime}$ similar to $\triangle A B C$ with base $A B^{\prime}=8 \mathrm{~cm}$.
7. Construct a triangle $A B C$ in which $A B=5 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Now construct another triangle whose sides are $\frac{5}{7}$ times the corresponding sides of $\triangle \mathrm{ABC}$.
8. Construct a triangle $A B C$ in which $B C=6 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Then construct another triangle whose sides are $\frac{3}{4}$ times the corresponding sides of $\triangle \mathrm{ABC}$.

Case Study Questions:

1. The management of a school decided to arouse interest of their students in Mathematics. So they want to construct some geometrical shapes in one corner of the school premises. They showed a rough sketch of a right triangular structure on a plane
sheet of paper with sides $A B=6 \mathrm{~m}, B C=8 \mathrm{~m}$ and $\angle B=90^{\circ}$. The diagram shows a perpendicular from the vertex B to the front side $A C$. They want to build a circular wall through B, C and D but they had certain problems in doing so. So they called on some students of class X to solve this problem. They made some suggestions.

i. Referring to the above, what is the length of perpendicular drawn on side $A C$ from vertex B ?
a. 2.6 m
b. 3.0 m
c. 4.8 m
d. 4.0 m
ii. Referring to the above, what is the length of perpendicular drawn on side $A C$ from vertex B ?
a. 2.6 m
b. 3.0 m
c. 4.8 m
d. 4.0 m
iii. Referring to the above, the length of tangent $A E$ is
a. 10 m
b. 8 m
c. 12 m
d. 6 m
iv. Referring to the above, what will be the length of AD?
a. 3.6 m
b. 3.8 m
c. 4.8 m
d. 5.6 m
v. Referring to the above, sum of angles $\angle B A E$ and $\angle B O E$ is
a. 120°
b. 180°
c. 90°
d. 60°
2. The construction of a road is in progress. A road already exists through a forest that goes over a circular lake. The engineer wants to build another road through the forest that connects this road but does not go through the lake.

As it turns out, the road the engineer will be building and the road it will connect to both represent characteristics of a circle that have their own name. The road/bridge that already exists is called a secant of the circular lake, and the road the engineer is going to build is called the tangent of the circular lake.
i. Refer to the question (2) if the road under construction, PT is 6 km and it is inclined at an angle of 30° to the line joining the centre, the radius of the lake is
a. 3 V 3 km
b. $4 \sqrt{ } 3 \mathrm{~km}$
c. $2 \sqrt{ } 3 \mathrm{~km}$
d. 5 V 3 km
ii. Refer to the above, if PT $=12 \mathrm{~km}$ and $\mathrm{PA}=9 \mathrm{~km}$, then the length of existing bridge is
a. 7 km
b. 9 km
c. 12 km
d. 16 km
iii. Refer to the question (3) above, the area of the lake is
a. $12 \pi \mathrm{~km}^{2}$
b. $16 \pi \mathrm{~km}^{2}$
c. $18 \pi \mathrm{~km}^{2}$
d. $9 \pi \mathrm{~km}^{2}$
iv. Refer to the above if the length of existing bridge is 5 km and the length of the existing road outside the lake is 4 km , then the length of the road under construction is
a. 4 km
b. 6 km
c. 10 km
d. 14 km
v. Refer to the question (3) above, the circumference of the lake is
a. $2 \sqrt{ } 3 \pi \mathrm{~km}$
b. $3 \sqrt{ } 3 \pi \mathrm{~km}$
c. $4 \sqrt{ } 3 \pi \mathrm{~km}$
d. $5 \sqrt{ } 3 \pi \mathrm{~km}$

Assertion Reason Questions-

1. Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true and R is not the correct explanation of A.
(c) A is true but R is false.
(d) Both A and R is false.

Assertion: a, b and c are the lengths of three sides of a triangle, then $\mathrm{a}+\mathrm{b}>\mathrm{c}$
Reason: The sum of two sides of a triangle is always greater than the third side.
2. Directions: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:
(a) Both A and R are true and R is the correct explanation of A.
(b) Both A and R are true and R is not the correct explanation of A.
(c) A is true but R is false.
(d) Both A and R is false.

Assertion: The side lengths $4 \mathrm{~cm}, 4 \mathrm{~cm}$ and 4 cm can be sides of equilateral triangle.
Reason: Equilateral triangle has all its three sides equal.

Answer Key

Multiple Choice questions-

1. (b) $p+q$
2. (d) 145°
3. (d) 12
4. (b) A_{11}
5. (a) A_{5} and B_{6}
6. (c) B_{7} to C
7. (b) 8
8. (d) 120°
9. (d) 120°
10. (c) 5 cm

Very Short Answer :

1. No, we know that in a triangle sum of two sides of a triangle is greater than the third side. So the condition is not satisfied.
2. A_{5} and B_{6}.
3. 120°
4. From Fig. it is clear that there are 3 points at equal distances on $A X$ and 4 points at equal distances on BY. Here P divides $A B$ on joining $A 3 B 4$. So P divides internally by $3: 4$.
5.

Given $A B=8 \mathrm{~cm}$
$A B^{\prime}=\frac{3}{4}$ of $A B$
$=\frac{3}{4} \times 8=6 \mathrm{~cm}$
$B B^{\prime}=A B-A B^{\prime}=8-6=2 \mathrm{~cm}$.
$\Rightarrow A B^{\prime}: B^{\prime}=6: 2=3: 1$
Hence the required ratio is $3: 1$.
6.

Hence, $\mathrm{PA}: \mathrm{PB}=3: 4$
7. $\mathrm{AB}=7 \mathrm{~cm}, \mathrm{AB}=\frac{A P}{A B}=\frac{3}{5} \ldots$. [Given
$\therefore \mathrm{AP}: \mathrm{PB}=3: 2$

Hence, $\mathrm{AP}: \mathrm{AB}=3: 5$ or $\frac{A P}{A B}=\frac{3}{5}$
Short Answer :

1. In $\triangle \mathrm{ABC}$
$A B=5 \mathrm{~cm}$
$B C=6 \mathrm{~cm}$
$\angle A B C=60^{\circ}$

Hence, $\triangle A^{\prime} B C^{\prime}$ is the required Δ.
2.

$\therefore \Delta A B^{\prime} C^{\prime}$ is the required Δ.
3. Here $A B=8 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and

Ratio $=\frac{3}{5}$ of corresponding sides

$\therefore \triangle A B^{\prime} C^{\prime}$ is the required triangle.
4. In $\triangle P Q R$,
$P Q=5 \mathrm{~cm}, P R=6 \mathrm{~cm}, \angle P=120^{\circ}$

$\therefore \triangle \mathrm{PO}^{\prime} \mathrm{R}^{\prime}$ is the required Δ.
5. Here, $B C=7 \mathrm{~cm}, \angle B=45^{\circ}, \angle C=60^{\circ}$ and ratio is $\frac{3}{5}$ times of corresponding sides

$\therefore \triangle A^{\prime} B C^{\prime}$ is the required triangle.
6.

Steps of Construction:

Draw $\triangle A B C$ with $A C=6 \mathrm{~cm}, A B=5 \mathrm{~cm}, B C=4 \mathrm{~cm}$.
Draw ray $A X$ making an acute angle with AÇ.
Locate 3 equal points A_{1}, A_{2}, A_{3} on $A X$.
Join $C A_{3}$.
Join $\mathrm{A}_{2} \mathrm{C}^{\prime}| | C A_{3}$.
From point C^{\prime} draw $B^{\prime} C^{\prime}| | B C$.
$\therefore \triangle A B^{\prime} C^{\prime}$ is the required triangle.

\therefore PA \& PB are the required tangents. +
8.

Steps of Construction:

Draw two circles with radius $O A=4 \mathrm{~cm}$ and $O P=6 \mathrm{~cm}$ with O as centre. Draw \perp bisector of OP at M. Taking M as centre and $O M$ as radius draw another circle intersecting the smaller circle at A and B and touching the bigger circle at P. Join PA and $P B$. $P A$ and $P B$ are the required tangents.

Verification:
In rt. $\triangle O A P$,
$O A^{2}+A P^{2}=O P^{2} \ldots$ [Pythagoras' theorem
$(4)^{2}+(A P)^{2}=(6)^{2}$
$A P^{2}=36-16=20$
$A P=+\sqrt{20}=\sqrt{4 \times 5}$
$=2 \sqrt{5} 2(2.236)=4.472=4.5 \mathrm{~cm}$
By measurement, $\therefore P A=P B=4.5 \mathrm{~cm}$
9.

Draw $\angle \mathrm{AOB}=135^{\circ}, \angle \mathrm{OAP}=90^{\circ}, \angle \mathrm{OBP}=90^{\circ}$
$\therefore \mathrm{PA}$ and PB are the required tangents.
10. $\mathrm{OP}=\mathrm{OC}+\mathrm{CP}=3.5+2.7=6.2 \mathrm{~cm}$

Hence AP \& PB are the required tangents.

Long Answer:

1. In $\triangle A B C, \angle A+\angle B+\angle C=180^{\circ} \ldots$ [angle sum property of a \triangle

$$
\begin{aligned}
& 105^{\circ}+45^{\circ}+C=180^{\circ} \\
& \angle C=180^{\circ}-105^{\circ}-450=30^{\circ} \\
& B C=7 \mathrm{~cm}
\end{aligned}
$$

$\therefore \triangle A^{\prime} B C^{\prime}$ is the required Δ.
2. Here, $B C=6 \mathrm{~cm}, \angle \mathrm{~A}=105^{\circ}$ and $\angle \mathrm{C}=30^{\circ}$

In $\triangle A B C$,
$\angle A+\angle B+\angle C=180^{\circ} \ldots$ [Angle-sum-property of a Δ
$105^{\circ}+\angle B+30^{\circ}=180^{\circ}$
$\angle B=180^{\circ}-105^{\circ}-30^{\circ}=45^{\circ}$
$\therefore \triangle A^{\prime} B C^{\prime}$ is the required Δ.
3. Here, $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}$ and ratio is $\frac{2}{3}$ times of corresponding sides.

$\therefore \triangle A^{\prime} B C^{\prime}$ is the required triangle.
4.

$\therefore \triangle A^{\prime} B C^{\prime}$ is the required triangle.
5.

Step of constructions:

Draw two circles on A and B as asked.
Z is the mid-point of $A B$.
From Z , draw a circle taking $\mathrm{ZA}=\mathrm{ZB}$ as radius,
so that the circle intersects the bigger circle at M and N and smaller circle at X and Y . Join $A X$ and $A Y, B M$ and $B N$.
$B M, B N$ are the required tangents from external point B.
$A X, A Y$ are the required tangents from external point A.
Justification:
$\angle A M B=90^{\circ} \ldots$ [Angle in a semi-circle
Since, AM is a radius of the given circle.
$\therefore \mathrm{BM}$ is a tangent to the circle
Similarly, BN, AX and AY are also tangents.
6.

Steps of construction:

- Draw a $\triangle A B C$ with side $A B=6 \mathrm{~cm}, \angle A=30^{\circ}$ and $\angle B=60^{\circ}$.
- Draw a ray $A X$ making an acute angle with $A B$ on the opposite side of point C.
- Locate points A_{1}, A_{2}, A_{3} and A_{4} on $A X$.
- Join $A_{3} B$. Draw a line through A_{4} parallel to $A_{3} B$ intersecting extended $A B$ at B^{\prime}.
- Draw a line parallel to $B C$ intersecting ray $A Y$ at C^{\prime}.

Hence, $\Delta A B^{\prime} C^{\prime}$ is the required triangle.
7. In $\triangle A B C, A B=5 \mathrm{~cm} ; B C=6 \mathrm{~cm} ; \angle A B C=60^{\circ}$

$\therefore \triangle A^{\prime} B C^{\prime}$ is the required Δ.
8.

Steps of Construction:

- Draw $\triangle A B C$ with the given data.
- Draw a ray $B X$ downwards making an acute angle with $B C$.
- Locate 4 points $B_{1}, B_{2}, B_{3}, B_{4}$, on $B X$, such that $B B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}$.
- Join CB_{4}.
- From B_{3} draw a line $C^{\prime} B_{3}| | C B_{4}$ intersecting $B C$ at C^{\prime}.
- From C^{\prime} draw $A^{\prime} C^{\prime}| | A C$ intersecting $A B$ at B^{\prime}.

Then $\triangle A B^{\prime} C^{\prime}$ in the required triangle.
Justification:
$\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime} \sim \triangle \mathrm{ABC}$
...[AA similarty rule

$$
\begin{equation*}
\frac{\mathrm{A}^{\prime} \mathrm{B}}{\mathrm{AB}}=\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{A}^{\prime} \mathrm{C}^{\prime}}{\mathrm{AC}} \tag{i}
\end{equation*}
$$

...[Sides are proportional

$$
\begin{equation*}
\text { But } \frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{BB}_{3}}{\mathrm{BB}_{4}}=\frac{3}{4} \tag{ii}
\end{equation*}
$$

$\therefore \quad \frac{\mathbf{A}^{\prime} \mathrm{B}}{\mathrm{AB}}=\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{A}^{\prime} \mathrm{C}^{\prime}}{\mathrm{AC}}=\frac{3}{4} \quad \ldots[$ From (i) \& (ii)

Case Study Answer:

1. Answer:
i. c.
ii. d.
iii. d.
iv. a.
v. b.
2. Answer:
i. c.
ii. a.
iii. a.
iv. b.
v. c.

Assertion Reason Answer-

(a) Both A and R are true and R is the correct explanation of A.
(a) Both A and R are true and R is the correct explanation of A.

