MATHEMATICS

Chapter 10: Circles

Circles

Circle

- The set of all the points in a plane that is at a fixed distance from a fixed point makes a circle.
- A Fixed point from which the set of points are at fixed distance is called the centre of the circle.
- A circle divides the plane into 3 parts: interior (inside the circle), the circle itself and exterior (outside the circle)

Division of a plane using circle

- A circle divides the plane on which it lies into three parts: inside the circle, the circle and outside the circle.
- All the points lying inside a circle are called its interior points and all those points which lie outside the circle are called its exterior points.
- The collection (set) of all interior points of a circle is called the interior of the circle while the collection (set) of all exterior points of a circle is called the exterior of the circle.

Chord, diameter and secant of a circle

- A line can meet a circle at the most in two points and the line segment joining two points on a circle is called a chord of the circle.
- A chord passing through the center of the circle is called a diameter of the circle. A diameter of the circle is its longest chord. It is equal to two times the radius.
- A line which meets a circle in two points is called a secant of the circle.

Arc of the circle

- A (continuous) part of a circle is called an arc of the circle. The arc of a circle is denoted by the symbol" ${ }^{\prime}$.
- When an arc is formed, it divides the circle into two pieces (between the points A and B), the smaller one and the longer one. The smaller one is called the minor arc of the circle, and the greater one is called the major arc of the circle.

Circumference and Semi-circle

- The length of the complete circle is called the circumference of the circle.

- One-half of the whole arc (circumference) of a circle is called a semi-circle.

Central angle and Degree measure

- Any angle whose vertex is centre of the circle is called a central angle.
- The degree measure of a minor arc is the measure of the central angle subtended by an arc.
- The degree measure of a circle is 360°. The degree measure of a semi-circle is 180° (half of the circle).
- The degree measure of a major arc is $\left(360^{\circ}-\theta^{\circ}\right)$, where θ° is the degree measure of the corresponding minor arc.

Congruent circles and arcs

- Two circles are said to be congruent if and only if either of them can be superposed on the other so as to cover it exactly.
- Accordingly, two arcs of a circle (or of congruent circles) are congruent if either of them can be superposed on the other so as to cover it exactly.

Sector of a circle

- The part of the plane region enclosed by an arc of a circle and its two bounding radii
iscalled sector of a circle.
- If the central angle of a sector is more than 180°, then the sector is called a major sector and if the central angle is less than 180°, then the sector is called a minor sector.

Segment of a circle

- A chord of a circle divides it into two parts. Each part is called a segment of the circle.
- The part containing the minor arc is called the minor segment, and the part containing the major arc is called the major segment.

Angle subtended by a chord and perpendicular drawn to a chord

- Equal chords of a circle subtend equal angles at the centre.

- If the angles subtended by the chords of a circle at the centre are equal, then the chords areequal.
- In a circle, perpendicular from the center to a chord bisects the chord.
- A line drawn through the centre of a circle to bisect a chord is perpendicular to the chord.
- Perpendicular bisectors of two chords of a circle, intersect each other at the centre of the circle.

Number of circle through one or more point(s)

- An infinite number of circles can be drawn through a given point, say P.

- An infinite number of circles can be drawn through two given points, say A and B.

- One and only one circle can be drawn through three non-collinear points.

Distance of chord from the centre

- The length of the perpendicular from a point to a line is the distance of the line from
the point.
- Equal chords of a circle (or of congruent circles) are equidistant from the centre (or centres).
- Chords equidistant from the centre of a circle are equal in length.

Angle subtended by an Arc of a circle

- The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
- If two chords of a circle are equal, then their corresponding arcs are congruent.
- Conversely, if two arcs are congruent, then their corresponding chords are equal.
- Congruent arcs (or equal arcs) of a circle subtend equal angles at the centre.

Con-cyclic points

- If a line segment joining two points subtends equal angles at two other points lying on the same side of the line containing the line segment, the four points are concyclic, i.e., they lie on the same circle.
- Angles in the same segment of a circle are equal.

Angle in a semi-circle

- An angle in a semi-circle is a right angle.
- The arc of a circle subtending a right angle at any point of the circle in its alternate segment is a semi-circle.

Cyclic quadrilaterals

A quadrilateral, all the four vertices of which lie on a circle is called a cyclic quadrilateral. The four vertices A, B, C and D are said to be concyclic points.

Properties of cyclic quadrilateral

- The opposite angles of a cyclic quadrilateral are supplementary i.e. their sum is 180°.
- If the sum of any pair of opposite angles of a quadrilateral is 180°, then the quadrilateral is cyclic.
- Any exterior angle of a cyclic quadrilateral is equal to the interior opposite angle.
- The quadrilateral formed (if possible) by the internal angle bisectors of any quadrilateral is cyclic.
- The line of centres of two intersecting circles subtends equal angles at the two points of intersection.

In the figure, angle $O A M=$ angle $P A M$.

- If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, then it is a rectangle.
- If the non-parallel sides of a trapezium are equal, then it is cyclic.

Theorem of equal chords subtending angles at the centre.

Equal chords subtend equal angles at the centre.

Proof: $A B$ and $C D$ are the 2 equal chords.
In $\triangle \mathrm{AOB}$ and $\triangle C O D$
$\mathrm{OB}=\mathrm{OC}$ [Radii]
OA = OD [Radii]
$A B=C D[$ Given $]$
$\triangle A O B \cong \triangle C O D$ (SSS rule)
Hence, $\angle A O B=\angle C O D$ [CPCT]
Theorem of equal angles subtended by different chords.
If the angles subtended by the chords of a circle at the centre are equal, then the chords are equal.
Proof: In $\triangle A O B$ and $\triangle C O D$
$O B=O C$ [Radii] $\angle A O B=\angle C O D$ [Given]
$O A=O D$ [Radii]
$\triangle A O B \cong \triangle C O D$ (SAS rule)
Hence, $\mathrm{AB}=\mathrm{CD}$ [CPCT]

Perpendicular from the centre to a chord bisects the chord.

Perpendicular from the centre of a circle to a chord bisects the chord.

Proof: $A B$ is a chord and $O M$ is the perpendicular drawn from the centre.
From $\triangle \mathrm{OMB}$ and $\triangle O M A$,
$\angle O M A=\angle O M B=90^{\circ} O A=O B$ (radii)
OM = OM (common)
Hence, $\triangle \mathrm{OMB} \cong \triangle \mathrm{OMA}$ (RHS rule)
Therefore AM = MB [CPCT]
A Line through the centre that bisects the chord is perpendicular to the chord.
A line drawn through the centre of a circle to bisect a chord is perpendicular to the chord.

Proof: OM drawn from the center to bisect chord $A B$.
From $\triangle O M A$ and $\triangle O M B$,
$\mathrm{OA}=\mathrm{OB}$ (Radii)
$\mathrm{OM}=\mathrm{OM}$ (common)
AM = BM (Given)
Therefore, $\triangle \mathrm{OMA} \cong \triangle \mathrm{OMB}$ (SSS rule)
$\Rightarrow \angle \mathrm{OMA}=\angle \mathrm{OMB}$ (С.P.C.T)
But, $\angle \mathrm{OMA}+\angle \mathrm{OMB}=180^{\circ}$
Hence, $\angle O M A=\angle O M B=90^{\circ} \Rightarrow O M \perp A B$

Class: 9th mathematics
Chapter- 10: Circles

Important Questions

Multiple Choice questions-

Question 1. If there are two separate circles drawn apart from each other, then the maximum number of common points they have:
(a) 0
(b) 1
(c) 2
(d) 3

Question 2. D is diameter of a circle and $A B$ is a chord. If $A D=50 \mathrm{~cm}, A B=48 \mathrm{~cm}$, then the distance of $A B$ from the Centre of the circle is
(a) 6 cm
(b) 8 cm
(c) 5 cm
(d) 7 cm

Question 3. In a circle with center O and a chord $B C$, points D and E lie on the same side of $B C$. Then, if $\angle B D C=80^{\circ}$, then $\angle B E C=$
(a) 80°
(b) 20°
(c) 160°
(d) 40°

Question 4. The center of the circle lies in \qquad of the circle.
(a) Interior
(b) Exterior
(c) Circumference
(d) None of the above

Question 5. If chords $A B$ and $C D$ of congruent circles subtend equal angles at their centers, then:
(a) $A B=C D$
(b) $A B>C D$
(c) $A B<A D$
(d) None of the above

Question 6. Segment of a circle is the region between an arc and \qquad of the circle.
(a) Perpendicular
(b) Radius
(c) Chord
(d) Secant

Question 7. In the figure, triangle $A B C$ is an isosceles triangle with $A B=A C$ and measure of angle $A B C=50^{\circ}$. Then the measure of angle $B D C$ and angle $B E C$ will be

(a) $60^{\circ}, 100^{\circ}$
(b) $80^{\circ}, 100^{\circ}$
(c) $50^{\circ}, 100^{\circ}$
(d) $40^{\circ}, 120^{\circ}$

Question 8. The region between chord and either of the arc is called.
(a) A sector
(b) A semicircle
(c) A segment
(d) A quarter circles

Question 9. The region between an arc and the two radii joining the Centre of the end points of the arc is called a:
(a) Segment
(b) Semi circle
(c) Minor arc
(d) Sector

Question 10. If a line intersects two concentric circles with Centre O at A, B, C and D, then:
(a) $A B=C D$
(b) $A B>C D$
(c) $A B<C D$
(d) None of the above

Very Short:

1. In the figure, O is the Centre of a circle passing through points A, B, C and D and $\angle A D C=120^{\circ}$. Find the value of x.

2. In the given figure, O is the Centre of the circle, $\angle A O B=60^{\circ}$ and $C D B=90^{\circ}$. Find $\angle O B C$.

3. In the given figure, O is the Centre of the circle with chords $A P$ and $B P$ being produced to R and Q respectively. If $\angle Q P R=35^{\circ}$, find the measure of $\angle A O B$.

4. In the figure, PQRS is a cyclic quadrilateral. Find the value of x.

5. In the given figure, $\angle A C P=40^{\circ}$ and $B P D=120^{\circ}$, then find $\angle C B D$.

6. In the given figure, if $\angle B E C=120^{\circ}, \angle D C E=25^{\circ}$, then find $\angle B A C$.

7. In the given figure, $A B$ and $C D$ are two equal chords of a circle with Centre O. $O P$ and $O Q$ are perpendiculars on chords $A B$ and $C D$ respectively. If $\angle P O Q=120^{\circ}$, find $\angle A P Q$.

8. Two circles whose centers are O and O^{\prime} intersect at P. Through P, a line parallel to $0 O^{\prime}$, intersecting the circles at C and D is drawn as shown in the figure. Prove that $C D=200^{\prime}$

Short Questions:

1. In the given figure, $P Q R=100^{\circ}$, where P, Q and R are points on a circle with Centre O. Find LOPR.

2. In figure, $A B C D$ is a cyclic quadrilateral in which $A B$ is extended to F and $B E \| D C$. If $\angle F B E=20^{\circ}$ and $D A B=95^{\circ}$, then find $\angle A D C$.

3. If the diagonals of a cyclic quadrilateral are diameters of the circle through the opposite vertices of the quadrilateral. Prove that the quadrilateral is a rectangle.
4. Equal chords of a circle subtends equal angles at the Centre.

5. In the figure, chord $A B$ of circle with Centre O, is produced to C such that $B C=O B$. $C O$ is joined and produced to meet the circle in D. If $\angle A C D=y$ and $\angle A O D=x$, show that $x=3 y$.

6. In the given figure, P is the Centre of the circle. Prove that: $\angle X P Z=2(\angle X \angle Y+$ $\angle Y X Z)$.

Long Questions:

1. In the given figure, O is the Centre of a circle of radius $r \mathrm{~cm}, O P$ and $O Q$ are perpendiculars to $A B$ and $C D$ respectively and $P Q=1 \mathrm{~cm}$. If $A B \| C D, A B=6 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$, determine r

2. In a circle of radius $5 \mathrm{~cm}, A B$ and $A C$ are two chords such that $A B=A C=6 \mathrm{~cm}$, as shown in the figure. Find the length of the chord $B C$.

3. In the given figure, $A C$ is a diameter of the circle with Centre O. Chord BD is perpendicular to $A C$. Write down the measures of angles a, b, c and d in terms of x.

4. Show that the quadrilateral formed by angle bisectors of a cyclic quadrilateral is also cyclic.

5. $P Q$ and $P R$ are the two chords of a circle of radius r. If the perpendiculars drawn from the Centre of the circle to these chords are of lengths a and $b, P Q=2 P R$, then
prove that: $\mathrm{b} 2=\frac{\mathrm{a} 2}{4}+\frac{3}{4} \mathrm{r} 2$

Assertion and Reason Questions-

1. In these questions, a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.
a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
c) Assertion is correct statement but reason is wrong statement.
d) Assertion is wrong statement but reason is correct statement.

Assertion: In a circle of radius 6 cm , the angle of a sector 60°. Then the area of the sector is $186 / 7 \mathrm{~cm}^{2}$.
Reason: Area of the circle with radius r is πr^{2}.
2. In these questions, a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.
a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
c) Assertion is correct statement but reason is wrong statement.
d) Assertion is wrong statement but reason is correct statement.

Assertion: The length of the minute hand of a clock is 7 cm . Then the area swept by the minute hand in 5 minutes is $12^{5} / 6 \mathrm{~cm}^{2}$.

Reason: The length of an arc of a sector of angle θ and radius r is given by $I=\theta / 360 x$ $2 \pi r$

Case Study Questions-

1. Read the Source/ Text given below and answer these questions:

A farmer has a circular garden as shown in the picture above. He has a different type of trees, plants and flower plants in his garden. In the garden, there are two mango trees A and B at a distance of $A B=10 \mathrm{~m}$. Similarly, he has two Ashoka trees at the same distance of 10 m as shown at C and D . $A B$ subtends $\angle A O B=120^{\circ}$ at the center O, The perpendicular distance of $A C$ from center is 5 m . The radius of the circle is 13 m .

Now answer the following questions:
i. What is the value of $\angle C O D$?
a. 60°
b. 120°
c. 100°
d. 80°
ii. What is the distance between mango tree A and Ashok tree C?
a. 12 m
b. 24 m
c. 13 m
d. 15 m
iii. What is the value of $\angle O A B$?
a. 60°
b. 120°
c. 30°
d. 90°
iv. What is the value of $\angle O C D$?
a. 30°
b. 120°
c. 60°
d. 90°
v. What is the value of $\angle O D C$?
a. 90°
b. 120°
c. 60°
d. 30°
2. Read the Source/ Text given below and answer these questions:

As Class IX C' s teacher Mrs. Rashmi entered in the class, She told students to do some practice on circle chapter. She Draws two-line $A B$ and $B C$ so that $A B=8 \mathrm{~cm}$ and $B C=$ 6 cm . She told all students To make this shape in their notebook and draw a circle passing through the three points A, B and C.
i. Dileep drew $A B$ and $B C$ as per the figure
ii. He drew perpendicular bisectors $O P$ and $O Q$ of the line $A B$ and $B C$.
iii. OP and $O Q$ intersect at O
iv. Now taking O as centre and OB as radius he drew The circle which passes through A, B and C.
v. He noticed that A, O and C are collinear.

Answer the following questions:
i. What you will call the line AOC?
a. Arc
b. Diameter
c. Radius
d. Chord
ii. What is the measure of $\angle A B C$?
a. 60°
b. 90°
c. 45°
d. 75°
iii. What you will call the yellow color shaded area AMB?
a. Arc.
b. Sector.
c. Major segment.
d. Minor Segment.
iv. What you will call the grey colour shaded area BCNA?
a. Arc.
b. Sector.
c. Major segment.
d. Minor Segment.
v. What is the radius of the circle?
a. 4 cm
b. 3 cm
c. 7 cm
d. 5 cm

Answer Key:

MCQ:

1. (a) 0
2. (d) 7 cm
3. (a) 80°
4. (a) Interior
5. (a) $A B=C D$
6. (c) Chord
7. (b) $80^{\circ}, 100^{\circ}$
8. (c) A segment
9. (d) Sector
10.(a) $A B=C D$

Very Short Answer:

1. Since $A B C D$ is a cyclic quadrilateral

$$
\angle \mathrm{ADC}+\angle \mathrm{ABC}=180^{\circ}
$$

[\therefore opp. \angle s of a cyclic quad. are supplementary]
$120^{\circ}+\angle \mathrm{ABC}=180^{\circ}$
$\angle A B C=180^{\circ}-120^{\circ}=60^{\circ}$
Now, $\angle \mathrm{ACB}=90^{\circ}$ [angle in a semicircle]
In rt. $\angle \mathrm{ed} \triangle \mathrm{CB}, \angle \mathrm{ACB}=90^{\circ}$
$\angle C A B+\angle A B C=90^{\circ}$
$x+60^{\circ}=90^{\circ}$
$x=90^{\circ}-60^{\circ}$
$x=30^{\circ}$
2. Since angle subtended at the Centre by an arc is double the angle subtended at the remaining part of the circle.

$$
\therefore \angle \mathrm{ACB}=\frac{1}{3} \angle \mathrm{AOB}=\frac{1}{3} \times 60^{\circ}=30^{\circ}
$$

Now, in ACBD, by using angle sum property, we have

$$
\begin{aligned}
& \angle \mathrm{CBD}+\angle \mathrm{BDC}+\angle \mathrm{DCB}=180^{\circ} \\
& \angle \mathrm{CBO}+90^{\circ}+\angle \mathrm{ACB}=180^{\circ}
\end{aligned}
$$

$$
[\because \angle C B O=\angle C B D \text { and } \angle A C B=\angle D C B \text { are the same } \angle s]
$$

$$
\angle C B O+90^{\circ}+30^{\circ}=180^{\circ}
$$

$$
\angle C B O=180 \circ-90^{\circ}-30^{\circ}=60^{\circ}
$$

$$
\text { or } \angle O B C=60^{\circ}
$$

3. $\angle \mathrm{APB}=\angle \mathrm{RPQ}=35^{\circ}$ [vert. opp. $\angle \mathrm{s}$]

Now, $\angle A O B$ and $\angle A P B$ are angles subtended by an arc $A B$ at Centre and at the remaining part of the circle.
$\therefore \angle \mathrm{AOB}=2 \angle \mathrm{APB}=2 \times 35^{\circ}=70^{\circ}$
4. In $\triangle P R S$, by using angle sum property, we have
$\angle P S R+\angle S R P+\angle R P S=180^{\circ}$
$\angle \mathrm{PSR}+50^{\circ}+350=180^{\circ}$
$\angle \mathrm{PSR}=180^{\circ}-850=95^{\circ}$
Since PQRS is a cyclic quadrilateral
$\therefore \angle \mathrm{PSR}+\angle \mathrm{PQR}=180^{\circ}$
[\because opp. $\angle \mathrm{s}$ of a cyclic quad. are supplementary]
$95^{\circ}+\mathrm{x}=180^{\circ}$
$x=180^{\circ}-95^{\circ}$
$x=85^{\circ}$
5. $\angle B D P=\angle A C P=40^{\circ}$ [angle in same segment]

Now, in $\triangle B P D$, we have
$\angle \mathrm{PBD}+\angle \mathrm{BPD}+\angle \mathrm{BDP}=180^{\circ}$
$\Rightarrow \angle P B D+120^{\circ}+40^{\circ}=180^{\circ}$
$\Rightarrow \angle P B D=180^{\circ}-1600=20^{\circ}$
or $\angle C B D=20^{\circ}$
6. $\angle B E C$ is exterior angle of $\triangle C D E$.
$\therefore \angle C D E+\angle D C E=\angle B E C$
$\Rightarrow \angle C D E+25^{\circ}=120^{\circ}$
$\Rightarrow \angle C D E=95^{\circ}$
7. Arc $X Y$ subtends $\angle X P Y$ at the Centre P and $\angle X Z Y$ in the remaining part of the circle.
$\therefore \angle X P Y=2(\angle X \angle Y)$
Similarly, arc $Y Z$ subtends $\angle Y P Z$ at the Centre P and $\angle Y X Z$ in the remaining part of the circle.
$\therefore \angle Y P Z=2(\angle Y X Z) \ldots$...(ii)
Adding (i) and (ii), we have
$\angle X P Y+\angle Y P Z=2(\angle X Z Y+\angle Y X Z)$
$\angle X P 2=2(\angle X Z Y+\angle Y X Z)$
8. Draw $O A \perp C D$ and $O^{\prime} B \perp C D$

Now, $O A \perp C D$
$\mathrm{OA} \perp \mathrm{CP}$
$C A=A P=\frac{1}{2} C P$
$C P=2 A P$....(i)

Similarly, $O^{\prime} B \perp C D$
O'B \perp PD
$\Rightarrow \mathrm{PB}=\mathrm{BD}=\frac{1}{2} \mathrm{PD}$
$\Rightarrow \mathrm{PD}=2 \mathrm{~PB}$
Also, $C D=C P+P D$
$=2 \mathrm{AP}+2 \mathrm{~PB}=2(\mathrm{AP}+\mathrm{PB})=2 \mathrm{AB}$
$C D=200^{\prime}\left[\because O A B O^{\prime}\right.$ is a rectangle]

Short Answer:

Ans: 1. Take any point A on the circumcircle of the circle.
Join AP and AR.
$\because A P Q R$ is a cyclic quadrilateral.
$\therefore \angle P A R+\angle P Q R=180^{\circ}$ [sum of opposite angles of a cyclic quad. is 180°]
$\angle P A R+100^{\circ}=180^{\circ}$
\Rightarrow Since $\angle P O R$ and $\angle P A R$ are the angles subtended by an arc $P R$ at the Centre of the circle and circumcircle of the circle.
$\angle P O R=2 \angle P A R=2 \times 80^{\circ}=160^{\circ}$
\therefore In APOR, we have OP $=$ OR [radii of same circle]
$\angle O P R=\angle O R P$ [angles opposite to equal sides]
Now, $\angle P O R+\angle O P R+\angle O R P=180^{\circ}$
$\Rightarrow 160^{\circ}+\angle \mathrm{OPR}+\angle \mathrm{OPR}=180^{\circ}$
$\Rightarrow 2 \angle O P R=20^{\circ}$
$\Rightarrow \angle O P R=10^{\circ}$
Ans: 2. Sum of opposite angles of a cyclic quadrilateral is 180°
$\therefore \angle \mathrm{DAB}+\angle \mathrm{BCD}=180^{\circ}$
$\Rightarrow 95^{\circ}+\angle \mathrm{BCD}=180^{\circ}$
$\Rightarrow \angle B C D=180^{\circ}-95^{\circ}=85^{\circ}$
$\because B E|\mid D C$
$\therefore \angle C B E=\angle B C D=85^{\circ}$ [alternate interior angles]
$\therefore \angle C B F=C B E+\angle F B E=85^{\circ}+20^{\circ}=105^{\circ}$
Now, $\angle A B C+2 C B F=180^{\circ}$ [linear pair]
and $\angle A B C+\angle A D C=180^{\circ}$ [opposite angles of cyclic quad.]
Thus, $\angle A B C+\angle A D C=\angle A B C+2 C B F$
$\Rightarrow \angle A D C=C B F$
$\Rightarrow \angle A D C=105^{\circ}\left[\because C B F=105^{\circ}\right]$
Ans: 3 . Here, $A B C D$ is a cyclic quadrilateral in which $A C$ and $B D$ are diameters.

Since $A C$ is a diameter.
$\therefore \angle A B C=\angle A D C=90^{\circ}$
$\left[\because\right.$ angle of a semicircle $\left.=90^{\circ}\right]$
Also, $B D$ is a diameter
$\therefore \angle B A D=\angle B C D=90^{\circ}\left[\because\right.$ angle of a semicircle $\left.=90^{\circ}\right]$
Now, all the angles of a cyclic quadrilateral $A B C D$ are 90 each.
Hence, ABCD is a rectangle.
Ans: 4. Given: In a circle $C(O, r)$, chord $A B=$ chord $C D$
To Prove: $\angle A O B=\angle C O D$.
Proof: In $\triangle A O B$ and $\triangle C O D$
AO = CO (radii of same circle]
$B O=$ DO [radii of same circle]
Chord AB = Chord CD (given)
$\Rightarrow \triangle A O B=A C O D$ [by SSS congruence axiom]
$\Rightarrow \angle A O B=C O D$ (c.p.c.t.]
Ans: 5. In $A O B C, O B=B C$
$\Rightarrow \angle B O C=\angle B C O=y$ [angles opp. to equal sides are equal]

$\angle O B A$ is the exterior angle of $\triangle B O C$
So, $\angle A B O=2 y$ [ext. angle is equal to the sum of int. opp. angles]
Similarly, $\angle A O D$ is the exterior angle of $\triangle A O C$
$\therefore x=2 y+y=3 y$
Ans: 6. Arc $X Y$ subtends $\angle X P Y$ at the Centre P and $\angle X Z Y$ in the remaining part of the circle.
$\therefore \angle X P Y=2(\angle X \angle Y)$
Similarly, arc $Y Z$ subtends $\angle Y P Z$ at the Centre P and $\angle Y X Z$ in the remaining part of the circle.
$\therefore \angle Y P Z=2(\angle Y X Z)$....(ii)
Adding (i) and (ii), we have
$\angle X P Y+\angle Y P Z=2(\angle X Z Y+\angle Y X Z)$
$\angle X P 2=2(\angle X Z Y+\angle Y X Z)$

Long Answer:

Ans: 1. Since the perpendicular drawn from the Centre of the circle to a chord bisects the chord. Therefore, P and Q are mid-points of $A B$ and $C D$ respectively.
Consequently, $A P=B P=\frac{1}{2} A B=3 \mathrm{~cm}$
and $C Q=Q D=\frac{1}{2} C D=4 \mathrm{~cm}$
In right-angled AQAP, we have
$O A^{2}=O P^{2}+A P 2$
$r^{2}=O P^{2}+32$
$r^{2}=O P^{2}+9$
In right-angled $\triangle O C Q$, we have
$O C^{2}=O Q^{2}+C Q^{2}$
$r^{2}=O Q^{2}+42$
$\mathrm{p}^{2}=O Q^{2}+16 \ldots$ (ii)
From (i) and (ii), we have
$O P^{2}+9=O Q^{2}+16$
$O P^{2}-O Q^{2}=16-9$
$x^{2}-(x-1)^{2}=16-9$ [where $O P=x$ and $P Q=1 \mathrm{~cm}$ given]
$x^{2}-y^{2}-1+2 x=7$
$2 x=7+1$
$x=4$
$\Rightarrow \mathrm{OP}=4 \mathrm{~cm}$
From (i), we have
$r^{2}=(4)^{2}+9$
$r^{2}=16+9=25$
$r=5 \mathrm{~cm}$
Ans: 2. Here, $O A=O B=5 \mathrm{~cm}$ [radii]
$A B=A C=6 \mathrm{~cm}$
$\therefore \mathrm{B}$ and C are equidistant from A .
$\therefore \mathrm{AO}$ is the perpendicular bisector of chord BC and it intersect BC in M .
Now, in rt. $\angle \mathrm{ed} \triangle \mathrm{AMB}, \mathrm{M}=90^{\circ} \ldots$.... (i)
\therefore By using Pythagoras Theorem, we have
$B M^{2}=A B^{2}-A M^{2}$
$=36-\mathrm{AM}^{2}$
Also, in rt. $\angle \mathrm{ed} \triangle \mathrm{BMO}, \angle \mathrm{M}=90^{\circ}$
\therefore By using Pythagoras Theorem, we have
$B M^{2}=B O^{2}-M O^{2}=25-(A O-A M)^{2}$
From (i) and (ii), we obtain
$25-(A O-A M)^{2}=36-A M 12$
$25-A O C-A M^{2}+240 \times A M=36-A M 12$
$25-25+2 \times 5 \times \mathrm{AM}=36$
$10 \mathrm{AM}=36$
AM $=3.6 \mathrm{~cm}$
From (i), we have
$\mathrm{BM}^{2}=36-(3.6) 2=36-12.96=23.04$
$B M=\sqrt{ } 23.04=4.8 \mathrm{~cm}$
Thus, $\mathrm{BC}=2 \times \mathrm{BM}$
$=2 \times 4.8=9.6 \mathrm{~cm}$
Hence, the length of the chord $B C$ is 9.6 cm .
Ans: 3. Here, AC is a diameter of the circle.
$\therefore \angle A D C=90^{\circ}$
$\Rightarrow \angle \mathrm{a}+\angle \mathrm{d}=90^{\circ}$
In right-angled $\triangle A E D, \angle E=90^{\circ}$
$\therefore \angle \mathrm{a}+2 \mathrm{~b}=90^{\circ}$
From (i) and (ii), we obtain
$\angle \mathrm{b}=\angle \mathrm{d} . .$. (iii)
Also, $\angle \mathrm{a}=\angle \mathrm{c}$... (iv)
[$\angle \mathrm{s}$ subtended by the same segment are equal]
Now, $\angle A O B$ and $\angle A D B$ are angles subtended by an $\operatorname{arc} A B$ at the Centre and at the remaining part of the circle.

$$
\therefore \angle \mathrm{ADB}=\frac{1}{2} \angle \mathrm{AOB} \Rightarrow \angle a=\frac{x}{2}
$$

From (iv), we have $\angle a=\angle c=\frac{x}{2}$
Again, $\angle \mathrm{AOB}+\angle \mathrm{BOC}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{BOC}=180^{\circ}-\angle \mathrm{AOB}=180^{\circ}-x$
$\angle \mathrm{BOC}$ and $\angle \mathrm{BDC}$ are angles subtended by an arc BC at the centre and at the remaining part of the circle.

$$
\begin{array}{ll}
\therefore & \angle \mathrm{BDC}=\frac{1}{2} \angle \mathrm{BOC} \\
& \Rightarrow
\end{array} \quad \angle d=\frac{1}{2}\left(180^{\circ}-x\right)=90^{\circ}-\frac{x}{2}
$$

Ans: 4. Given: A cyclic quadrilateral $A B C D$ in which $A P, B P, C R$ and $D R$ are the angle bisectors of $\angle A, \angle B, 2 C$ and $\angle D$ respectively such that a quadrilateral $P Q R S$ is formed. To

Prove: PQRS is a cyclic quadrilateral.
Proof: Since $A B C D$ is a cyclic quadrilateral.
$\therefore \angle A+2 C=180^{\circ}$ and $\angle B+\angle D=180^{\circ}$
Also, $A P, B P, C R$ and $D R$ are the angle bisectors of $\angle A, \angle B, \angle C$ and $\angle D$ respectively.
$\therefore \angle 1=\frac{1}{2} \angle \mathrm{~A}, \angle 2=\frac{1}{2} \angle \mathrm{~B}, \angle 3=\frac{1}{2} \angle \mathrm{C}$ and $\angle 4=\frac{1}{2} \angle \mathrm{D}$
From (i), we have $\frac{1}{2} \angle \mathrm{~A}+\frac{1}{2} \angle \mathrm{C}=\frac{1}{2}(\angle \mathrm{~A}+\angle \mathrm{C})=\frac{1}{2} \times 180^{\circ}=90^{\circ}$
and

$$
\frac{1}{2} \angle \mathrm{~B}+\frac{1}{2} \angle \mathrm{D}=\frac{1}{2}(\angle \mathrm{~B}+\angle \mathrm{D})=\frac{1}{2} \times 180^{\circ}=90^{\circ}
$$

or $\angle 1+\angle 3=90^{\circ}$
and $\angle 2+\angle 4=90^{\circ}$
Now, in $\triangle A P B$, by angle sum property of a Δ
$\angle 1+\angle 2+\angle P=180^{\circ}$... (iii)
Again, in $\triangle C R D$, by angle sum property of a \triangle
$\angle 3+\angle 4+\angle R=180^{\circ}$...(iv)
Adding (iii) and (iv), we have
$\angle 1+\angle 2+\angle 3+\angle 4+\angle P+\angle R=180^{\circ}+180^{\circ}$
$90^{\circ}+90^{\circ}+\angle \mathrm{P}+\angle \mathrm{R}=360^{\circ}$ [using (ii)]
$\angle P+\angle R=360^{\circ}-180^{\circ}=180^{\circ}$
i.e., the sum of one pair of the opposite angles of quadrilateral PQRS is 180°.

Hence, the quadrilateral PQRS is a cyclic quadrilateral.
Ans: 5. In circle Clo, r), PQ and PR are two chords, draw OM I PQ, OL I PR, such that $\mathrm{OM}=\mathrm{a}$
and $\mathrm{OL}=\mathrm{b}$. Join OP . Since the perpendicular from the Centre of the circle to the chord of the circle, bisects the chord.
\therefore We have,

$$
\mathrm{PM}=\mathrm{MQ}=\frac{1}{2} \mathrm{PQ}
$$

and

$$
\mathrm{PL}=\mathrm{LR}=\frac{1}{2} \mathrm{PR}
$$

In rt. $\triangle \mathrm{OMP}, \angle \mathrm{M}=90^{\circ}$
\therefore By Pythagoras Theorem, we have

$$
\begin{aligned}
\mathrm{PM}^{2} & =\mathrm{OP}^{2}-\mathrm{OM}^{2} \\
\left(\frac{1}{2} \mathrm{PQ}\right)^{2} & =r^{2}-a^{2} \\
\frac{\mathrm{PQ}^{2}}{4} & =r^{2}-a^{2}
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \quad \mathrm{PQ}^{2}=4 r^{2}-4 a^{2} \tag{i}
\end{equation*}
$$

Again, in rt. $\triangle \mathrm{OLP}, \angle \mathrm{L}=90^{\circ}$
\therefore By Pythagoras Theorem, we have

$$
\begin{array}{rlr}
\mathrm{PL}^{2} & =\mathrm{OP}^{2}-\mathrm{OL}^{2} \\
\left(\frac{1}{2} \mathrm{PR}\right)^{2} & =r^{2}-b^{2} \\
\frac{\mathrm{PR}^{2}}{4} & =r^{2}-b^{2} \\
\mathrm{PR}^{2} & =4 r^{2}-4 b^{2} \quad \ldots(\text { iii) } \\
\mathrm{PQ} & =2 \mathrm{PR} & \text { [given] } \\
\mathrm{PQ}^{2} & =4 \mathrm{PR}^{2} & \ldots \text { (iii) } \tag{iii}
\end{array}
$$

\Rightarrow

(v)	(d)	30°

2.

(i)	(b)	Diameter
(ii)	(b)	90°
(iii)	(d)	Minor Segment.
(iv)	(c)	Major segment.
(v)	(d)	5 cm

