MATHEMATICS

Chapter 8: Application of Integrals

APPLICATION OF INTEGRALS

1. Elementary area: The area is called elementary area which is located at any arbitary position within the region which is specified by some value of x between a and b.
2. The area of the region bounded by the curve $y=f(x), x$-axis and the lines $x=a$ and $x=b(b>$ a) is given by the formula: $\operatorname{Area}=\int_{z}^{b} v d x=\int_{z}^{b} f(x) d x$
3. The area of the region bounded by the curve $x=\theta(y), y$-axis and the lines $y=c, y=d$ is given by the formula: Area $=\int_{c}^{b} x d y=\int_{c}^{b} \theta(y) d y$
4. The area of the region enclosed between two curves $y=f(x), y=g(x)$ and the lines $x=a, x=$ b is given by the formula, Area $=\int_{a}^{b}[f(x)-g(x)] d x$, where $f(x) \geq g(x)$ in $[\mathrm{a}, \mathrm{b}]$.
5. If $f(x) \geq g(x)$ in $[\mathrm{a}, \mathrm{c}]$ and $f(x) \leq g(x)$ in $[\mathrm{c}, \mathrm{b}], \mathrm{a}<\mathrm{c}<\mathrm{b}$, then we write the areas as:

$$
\text { Area }=\int_{a}^{b}[f(x)-g(x)] d x+\int_{c}^{b}[g(x)-f(x)] d x
$$

Class: 12th Maths

Chapter- 8 : Applications of Integrals

The area of the region enclosed between
two curves $y=f(x), y=g(x)$
and the lines $x=a, x=b$ is given by
$A=\int_{a}^{b}[f(x)-g(x)] d x$, where $f(x) \geq g(x)$ in $[a, b]$
For eg: To find the area of the region bounded by the two parabolas $y=x^{2}$ and $y^{2}=x$
$(0,0)$ and $(1,1)$ are points of intersection of $y=x^{2}$ and

$$
y^{2}-x \text { and } y^{2}=x \Rightarrow y=\sqrt{x}=f(x), \text { and } y=x^{2}=g(x)
$$

, where $f(x) \geq g(x)$ in $[0,1]$.

$$
\text { Area, } \begin{aligned}
A & =\int_{0}^{1}[f(x)-g(x)] d x \\
& =\int_{0}^{1}\left[\sqrt{x}-x^{2}\right] d x \\
& =\left[\frac{2}{3} x^{3 / 2}-\frac{x^{3}}{3}\right]_{0}^{1} \\
& =\frac{2}{3}-\frac{1}{3}=\frac{1}{3} \text { Sq. units. }
\end{aligned}
$$

Area between two

 curves$$
\text { if } f(x) \geq g(x) \text { in }[a, c] \text { and } f(x) \leq g(x)
$$

$$
\text { in }[c, b], a<c<b \text {, then the area is }
$$

$$
A=\int_{a}^{c}[f(x)-g(x)] d x+\int_{c}^{b}[g(x)-f(x)] d x
$$

The area of the region bounded by the curve
$x=f(y), y-$ axis and the lines $y=c$ and $y=d(d>c)$ is given by $A=\int_{c}^{d} x d y$ or $\int_{c}^{d} f(y) d y$.
For eg: the area bounded by $x=y^{3}, y$-axis in the I quadrant and the lines $y=1$ and $y=2$ is

$$
A=\int_{1}^{2} x d y=\int_{1}^{2} y^{3} d y=\left[\frac{1}{4} y^{4}\right]_{1}^{2}=\frac{1}{4}\left(2^{4}-1^{4}\right)=\frac{15}{4} \text { Sq. units }
$$

The area of the region bounded by the curve $y=f(x), x$-axis and the lines $x=a$ and $x=b(b>a)$ is given by $A=\int_{a}^{b} y d x$ or $\int_{a}^{b} f(x) d x$.
For $e g$: the area bounded by $y=x^{2}, x$-axis in I quadrant and the lines $x=2$ and $x=3$ is -
$A=\int_{2}^{3} y d x=\int_{2}^{3} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{2}^{3}=\frac{1}{3}(27-8)=\frac{19}{3}$ Sq.units.

Important Questions

Multiple Choice questions-

1. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=$ 0 and $x=2$ is
(a) π
(b) $\frac{\pi}{2}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{4}$
2. Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is
(a) 2
(b) $\frac{9}{4}$
(c) $\frac{9}{3}$
(d) $\frac{9}{2}$
3. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is
(a) $2(\pi-2)$
(b) $\pi-2$
(c) $2 \pi-1$
(d) $2(\pi+2)$.
4. Area lying between the curves $y^{2}=4 x$ and $y=2$ is:
(a) $\frac{2}{3}$
(b) $\frac{1}{3}$
(c) $\frac{1}{4}$
(d) $\frac{3}{4}$
5. Area bounded by the curve $y=x^{3}$, the x-axis and the ordinates $x=-2$ and $x=1$ is
(a) -9
(b) $-\frac{15}{4}$
(c) $\frac{15}{4}$
(d) $\frac{17}{4}$
6. The area bounded by the curve $y=x|x|, x$-axis and the ordinates $x=-1$ and $x=1$ is given by
(a) 0
(b) $-\frac{1}{3}$
(c) $\frac{2}{3}$
(d) $\frac{4}{3}$
7. The area of the circle $x^{2}+y^{2}=16$ exterior to the parabola $y^{2}=6 x$ is
(a) $\frac{4}{3}(4 \pi-\sqrt{3})$
(b) $\frac{1}{3}(4 \pi+\sqrt{3})$
(c) $\frac{2}{3}(8 \pi-\sqrt{3})$
(d) $\frac{4}{3}(8 \pi+\sqrt{3})$
8. The area enclosed by the circle $x^{2}+y^{2}=2$ is equal to
(a) 4π sq. units
(b) $2 \sqrt{2} \pi$ sq. units
(c) $4 \pi^{2}$ sq. units
(d) 2π sq. units.
9. The area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is equal to
(a) $\pi^{2} a b$

APPLICATION OF INTEGRALS

(b) $\pi a b$
(c) $\pi a^{2} b$
(d) $\pi a b^{2}$.
10. The area of the region bounded by the curve $y=x^{2}$ and the line $y=16$ is
(a) $\frac{32}{3}$
(b) $\frac{256}{3}$
(c) $\frac{64}{3}$
(d) $\frac{128}{3}$

Very Short Questions:

1. Find the area of region bounded by the curve $y=x^{2}$ and the line $y=4$.
2. Find the area bounded by the curve $y=x^{3}, x=0$ and the ordinates $x=-2$ and $x=1$.
3. Find the area bounded between parabolas $y^{2}=4 x$ and $x^{2}=4 y$.
4. Find the area enclosed between the curve $y=\cos x, 0 \leq x \leq \frac{\pi}{4}$ and the co-ordinate axes.
5. Find the area between the x-axis curve $y=\cos x$ when $0 \leq x<2$.
6. Find the ratio of the areas between the center $y=\cos x$ and $y=\cos 2 x$ and x-axis for $x=0$ to
$\mathrm{x}=\frac{\pi}{3}$
7. Find the areas of the region:
$\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x}^{2}+\mathrm{y}^{2} \leq 1 \leq \mathrm{x}+4\right\}$

Long Questions:

1. Find the area enclosed by the circle:

$$
\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2} \text {. (N.C.E.R.T.) }
$$

2. Using integration, find the area of the region in the first quadrant enclosed by the x axis, the line $\mathrm{y}=\mathrm{x}$ and the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=32$. (C.B.S.E. 2018)
3. Find the area bounded by the curves $y=\sqrt{x}, 2 y+3=Y$ and Y-axis. (C.B.S.E. Sample Paper 2018-19)
4. Find the area of region:

$$
\left\{(x, y): x^{2}+y^{2}<8, x^{2}<2 y\right\} . \text { (C.B.S.E. Sample Paper 2018-19) }
$$

Case Study Questions:

1. Ajay cut two circular pieces of cardboard and placed one upon other as shown in figure. One of the circle represents the equation $(x-1)^{2}+y^{2}=1$, while other circle represents the equation $\mathrm{x}^{2}+\mathrm{y}^{2}=1$.

Based on the above information, answer the following questions.
i. Both the circular pieces of cardboard meet each other at
a. $\mathrm{x}=1$
b. $\mathrm{X}=\frac{1}{2}$
c. $\mathrm{x}=\frac{1}{3}$
d. $\mathrm{X}=\frac{1}{4}$
ii. Graph of given two curves can be drawn as.
a.

b.

C.

d. None of these

APPLICATION OF INTEGRALS

iii. Value of $\int_{0}^{\frac{1}{2}} \sqrt{1-(x-1)^{2}} d x$ is.
a. $\frac{\pi}{6}-\frac{\sqrt{3}}{8}$
b. $\frac{\pi}{6}+\frac{\sqrt{3}}{8}$
c. $\frac{\pi}{2}+\frac{\sqrt{3}}{4}$
d. $\frac{\pi}{2}-\frac{\sqrt{3}}{4}$
iv. Value of $\int_{\frac{1}{2}}^{1} \sqrt{1-\mathrm{x}^{2}} \mathrm{dx}$ is.
a. $\frac{\pi}{6}+\frac{\sqrt{3}}{4}$
b. $\frac{\pi}{6}+\frac{\sqrt{3}}{8}$
c. $\frac{\pi}{6}-\frac{\sqrt{3}}{8}$
d. $\frac{\pi}{2}-\frac{\sqrt{3}}{4}$
v. Area of hidden portion of lower circle is.
a. $\left(\frac{2 \pi}{3}+\frac{\sqrt{3}}{2}\right)$ sq.units
b. $\left(\frac{\pi}{3}-\frac{\sqrt{3}}{8}\right)$ sq.units
c. $\left(\frac{\pi}{3}+\frac{\sqrt{3}}{8}\right)$ sq.units
d. $\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right)$ sq.units
2. Location of three houses of a society is represented by the points $A(-1,0), B(1,3)$ and $\mathrm{C}(3,2)$ as shown in figure.

Based on the above information, answer the following questions
(i) Equation of line AB is.
a. $\mathrm{y}=\frac{3}{2}(\mathrm{x}+1)$
b. $\mathrm{y}=\frac{3}{2}(\mathrm{x}-1)$
c. $\mathrm{y}=\frac{1}{2}(\mathrm{x}+1)$
d. $\mathrm{y}=\frac{1}{2}(\mathrm{x}-1)$
(ii) Equation of line BC is.
a. $\mathrm{y}=\frac{1}{2} \mathrm{x}-\frac{7}{2}$
b. $\mathrm{y}=\frac{3}{2} \mathrm{x}-\frac{7}{2}$
c. $\mathrm{y}=\frac{-1}{2} \mathrm{x}+\frac{7}{2}$
d. $\mathrm{y}=\frac{3}{2} \mathrm{x}+\frac{7}{2}$
(iii) Area of region ABCD is.
a. 2 sq. units
b. 4 sq. units
c. 6 sq. units
d. 8 sq. units
(iv) Area of $\triangle \mathrm{ADC}$ is,
a. 4 sq. units
b. 8 sq. units
c. 16 sq. units
d. 32 sq. units
(v) Area of $\triangle A B C$ is.
a. 3 sq. units
b. 4 sq. units
c. 5 sq. units
d. 6 sq. units

Answer Key-

Multiple Choice questions-

1. Answer: (a) π
2. Answer: (a) 2
3. Answer: (b) $\pi-2$
4. Answer: (b) $\frac{1}{3}$
5. Answer: (b) $-\frac{15}{4}$
6. Answer: (c) $\frac{2}{3}$
7. Answer: (c) $\frac{2}{3}(8 \pi-\sqrt{3})$
8. Answer: (d) 2π sq. units.
9. Answer: (b) тab
10. Answer: (b) $\frac{256}{3}$

Very Short Answer:

APPLICATION OF INTEGRALS

1. Solution: $\frac{32}{2}$ sq. units.
2. Solution: $\frac{17}{4}$ sq. units.
3. Solution: $\frac{16}{3}$ sq. units.
4. Solution: $\frac{1}{2}$ sq. units.
5. Solution: 4 sq. units
6. Solution: $2: 1$.
7. Solution: $\frac{1}{2}(\pi-1)$ sq. units.

Long Answer:

1. Solution:

The given circle is
$x^{2}+y^{2}=a^{2}$ \qquad
This is a circle whose center is $(0,0)$ and radius 'a'.

Area of the circle $=4 x$ (area of the region OABO, bounded by the curve, x-axis and ordinates $\mathrm{x}=0, \mathrm{x}=\mathrm{a}$)
[\because Circle is symmetrical about both the axes]
$=4 \int_{0}^{a} y d x$ [Taking vertical strips] o
$=4 \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x$
$\left[\because(1) \Rightarrow \mathrm{y}= \pm \sqrt{a^{2}-x^{2}}\right.$

APPLICATION OF INTEGRALS

But region OABO lies in 1st quadrant, $\therefore \mathrm{y}$ is +ve]

$$
\begin{aligned}
& =4\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]_{0}^{a} \\
& =4\left[\left\{\frac{a}{2}(0)+\frac{a^{2}}{2} \sin ^{-1}(1)\right\}-\{0+0\}\right] \\
& =4\left(\frac{a^{2}}{2} \cdot \frac{\pi}{2}\right)=\pi a^{2} \text { sq. units. }
\end{aligned}
$$

2. Solution:

We have:
$y=x . . .(1)$
and $\mathrm{x}^{2}+\mathrm{y}^{2}=32$
(1) is a st. line, passing through $(0,0)$ and (2) is a circle with centre $(0,0)$ and radius $4 \sqrt{2}$ units. Solving (1) and (2) :

Putting the value of y from (1) in (2), we get:
$x^{2}+x^{2}=32$
$2 x^{2}=32$
$x^{2}=16$
$x=4$.
[\because region lies in first quadrant]
Also, $\mathrm{y}=4$
Thus, the line (1) and the circle (2) meet each other at B (4,4), in the first quadrant.
Draw BM perp. to x - axis.

APPLICATION OF INTEGRALS

\therefore Reqd. area $=$ area of the region OMBO + area of the region BMAB
Now, area of the region OMBO

$$
\begin{aligned}
& =\int_{0}^{4} y d x \quad \quad \text { TTaking vertice } \\
& =\int_{0}^{4} x d x=\left[\frac{x^{2}}{2}\right]_{0}^{4}=\frac{1}{2}(16-0)=8 .
\end{aligned}
$$

Again, area of the region BMAB

$$
\begin{aligned}
& =\int_{4}^{4 \sqrt{2}} y d x \\
& =\int_{4}^{4 \sqrt{2}} \sqrt{32-x^{2}} d x \\
& {\left[\because y^{2}=32-x^{2} \Rightarrow y=\sqrt{32-x^{2}}, \text { taking }+v e\right.} \\
& \text { sign, as it lies in Ist quadrant] } \\
& =\int_{4}^{4 \sqrt{2}} \sqrt{(4 \sqrt{2})^{2}-x^{2}} d x \\
& =\left[\frac{x \sqrt{32-x^{2}}}{2}+\frac{32}{2} \sin ^{-1} \frac{x}{4 \sqrt{2}}\right]_{4}^{4 \sqrt{2}} \\
& =\left\{\frac{1}{2} 4 \sqrt{2} \times 0+\frac{32}{2} \sin ^{-1}(1)\right\} \\
& -\left\{\frac{4}{2} \sqrt{32-16}+\frac{32}{2} \sin ^{-1} \frac{1}{\sqrt{2}}\right\} \\
& =0+16\left(\frac{\pi}{2}\right)-\left(2 \times 4+16 \times \frac{\pi}{4}\right)
\end{aligned}
$$

APPLICATION OF INTEGRALS

$=8 \pi-(8+4 \pi)=4 \pi-8$
\therefore From (3),
Required area $=8+(4 \pi-8)=4 \pi$ sq. units.
3. Solution:

The given curves are
$y=\sqrt{x}$
and $2 y+3=x$...(2)
Solving (1) and (2), we get;
$\sqrt{2 y+3}=$ y
Squaring, $2 \mathrm{y}+3=\mathrm{y} 2$
$\Rightarrow y^{2} 2-2 y-3=0$
$\Rightarrow(y+1)(y-3)=0 \Rightarrow y=-1,3$
$\Rightarrow \mathrm{y}=3[\because \mathrm{y}>0]$
Putting in (2),
$x=2(3)+3=9$.
Thus, (1) and (2) intersects at $(9,3)$.

APPLICATION OF INTEGRALS

$\therefore \quad$ Reqd. Area $=\int_{0}^{3}(2 y+3) d y-\int_{0}^{3} y^{2} d y$

$$
=\left[y^{2}+3 y\right]_{0}^{3}-\left[\frac{y^{3}}{3}\right]_{0}^{3}
$$

$$
=(9+9)-\left(\frac{27}{3}\right)
$$

$$
=9+9-9=9 \text { sq. units. }
$$

4. Solution:

The given curves are;
$x^{2}+y^{2}=8$ \qquad
$x^{2}=2 y$

Solving (1) and (2):
$8-y^{2}=2 y$

APPLICATION OF INTEGRALS

$\Rightarrow y^{2}+2 y-8=0$
$\Rightarrow(y+4)(y-2)=0$
$=y=-4,2$
$\Rightarrow y=2 .[\because y>0]$
Putting in (2), $\mathrm{x}^{2}=4$
$\Rightarrow \mathrm{x}=-2$ or 2 .
Thus, (1) and (2) intersect at $P(2,2)$ and $Q(-2,2)$.
\therefore Required area $=\int_{-2}^{2} \sqrt{8-x^{2}} d x-\int_{-2}^{2} \frac{x^{2}}{2} d x$
$=2\left[\int_{0}^{2} \sqrt{(2 \sqrt{2})^{2}-x^{2}} d x-\int_{0}^{2} \frac{x^{2}}{2} d x\right]$
$=2\left[\frac{x \sqrt{8-x^{2}}}{2}+\frac{8}{2} \sin ^{-1}\left(\frac{x}{2 \sqrt{2}}\right)\right]_{0}^{2}-\frac{1}{3}\left[x^{3}\right]_{0}^{2}$
$=2\left[2+4 \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)-0\right]-\frac{1}{3}[8-0]$
$=4+8\left(\frac{\pi}{4}\right)-\frac{8}{3}=\left(2 \pi+\frac{4}{3}\right)$ sq. units.

Case Study Answers:

1. Answer:

APPLICATION OF INTEGRALS

i. (b) $\mathrm{x}=\frac{1}{2}$

Solution:

We have, $(x-1)^{2}+y^{2}=1$
$\Rightarrow \mathrm{y}=\sqrt{1-(\mathrm{x}-1)^{2}}$
Also $\mathrm{x}^{2}+\mathrm{y}^{2}=1$
$\Rightarrow \mathrm{y}=\sqrt{1-\mathrm{x}^{2}}$
From (i) and (ii), we get

$$
\begin{aligned}
& \sqrt{1-(\mathrm{x}-1)^{2}}=\sqrt{1-\mathrm{x}^{2}} \\
& \Rightarrow(\mathrm{x}-1)^{2}=\mathrm{x}^{2} \\
& \Rightarrow 2 \mathrm{x}=1 \\
& \Rightarrow \mathrm{x}=\frac{1}{2}
\end{aligned}
$$

ii. (c)

APPLICATION OF INTEGRALS

iii. (a) $\frac{\pi}{6}-\frac{\sqrt{3}}{8}$

Solution:

$$
\begin{aligned}
& {\left[\int_{0}^{\frac{1}{2}} \sqrt{1-(x-1)^{2}}+\frac{1}{2} \sin ^{-1}\left(\frac{x-1}{1}\right)\right]} \\
& =\frac{1}{2}\left(\frac{1}{2}-1\right) \sqrt{1-\frac{1}{4}}+\frac{1}{2}+\sin ^{-1}\left(-\frac{1}{2}\right)-\left(-\frac{1}{2}\right) \\
& -\frac{1}{2} \sin ^{-1} \\
& =\left[\frac{-1}{4} \cdot \frac{\sqrt{3}}{2}-\frac{1}{2} \cdot \frac{\pi}{6}+0+\frac{1}{2} \cdot \frac{\pi}{2}\right]=\frac{\sqrt{3}}{8}-\frac{\pi}{12}+\frac{\pi}{4} \\
& =\frac{\pi}{6}-\frac{\sqrt{3}}{8}
\end{aligned}
$$

iv. (c) $\frac{\pi}{6}-\frac{\sqrt{3}}{8}$

$$
\begin{aligned}
& \int_{\frac{1}{2}}^{1} \sqrt{1-x^{2}} d x=\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x\right]_{\frac{1}{2}}^{1} \\
& =0+\frac{1}{2} \sin ^{-1}(1)-\frac{1}{4} \sqrt{1-\frac{1}{4}}-\frac{1}{2} \sin ^{-1}\left(\frac{1}{2}\right) \\
& =\frac{\pi}{4}-\frac{\sqrt{3}}{8}-\frac{\pi}{12}=\frac{\pi}{6}-\frac{\sqrt{3}}{8}
\end{aligned}
$$

APPLICATION OF INTEGRALS

v. (d) $\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right)$ sq.units

Solution:

$$
\begin{aligned}
& =2\left[\int_{0}^{\frac{1}{2}} \sqrt{1-(\mathrm{x}-1)^{2}} \mathrm{dx}+\int_{\frac{1}{2}}^{1} \sqrt{1-\mathrm{x}^{2}} \mathrm{dx}\right] \\
& =2\left[\frac{\pi}{6}-\frac{\sqrt{3}}{8}+\frac{\pi}{6}-\frac{\sqrt{3}}{8}\right] \\
& =2\left[\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right]=\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right) \text { sq.units }
\end{aligned}
$$

2. Answer :

i. (a) $y=\frac{3}{2}(x+1)$

Solution:
Equation of line $A B$ is. $y-0=\frac{3-0}{1+1}(x+1) \Rightarrow y=\frac{3}{2}(x+1)$
ii. (c) $y=\frac{-1}{2} x+\frac{7}{2}$

Solution:
Equation of line $B C$ is $y-3=\frac{2-3}{3-1}(x+1)$
$\Rightarrow y=-\frac{1}{2} x+\frac{1}{2}+3 \Rightarrow y=\frac{-1}{2} x+\frac{7}{2}$
iii. (d) 8 sq. units

Solution:

$$
\begin{aligned}
& \text { Area of region } \mathrm{ABCD}=\text { Area of } \triangle \mathrm{ABE}+\text { Area of region } \mathrm{BCDE} \\
& =\int_{-1}^{1} \frac{3}{2}(\mathrm{x}+1) \mathrm{dx}+\int_{1}^{3}\left(\frac{-1}{2} \mathrm{x}+\frac{7}{2}\right) \mathrm{dx} \\
& =\frac{3}{2}\left[\frac{\mathrm{x}^{2}}{2}+\mathrm{x}\right]_{-1}^{1}+\left[\frac{-\mathrm{x}^{2}}{4}+\frac{7}{2} \mathrm{x}\right]_{1}^{3} \\
& \frac{3}{2}\left[\frac{1}{2}+1-\frac{1}{2}+1\right]+\left[\frac{-9}{4}+\frac{21}{2}+\frac{1}{4}-\frac{7}{2}\right] \\
& =3+5=8 \mathrm{sq} . \mathrm{units}
\end{aligned}
$$

iv. (a) 4 sq. units

Solution:
Equation of line $A C$ is $y-0=\frac{2-0}{3+1}(x+1)$
$\Rightarrow \mathrm{y}=\frac{1}{2}(\mathrm{x}+1)$
\therefore Area of $\triangle \mathrm{ADC}=\int_{-1}^{3} \frac{1}{2}(x+1) \mathrm{dx}=\left[\frac{\mathrm{x}^{2}}{4}+\frac{1}{2} \mathrm{x}\right]_{-1}^{3}$
$=\frac{9}{4}+\frac{3}{2}-\frac{1}{4}+\frac{1}{2}=4$ sq.units
v. (b) 4 sq. units

Solution:

Area of $\triangle \mathrm{ABC}=$ Area of region ABCD - Area of $\triangle \mathrm{ACD}=8-4=4$ sq.units

