MATHEMATICS

Chapter 4: PRINCIPLE OF MATHEMATICALINDUCTION

PRINCIPLE OF MATHEMATICAL INDUCTION

Top Concepts

1. There are two types of reasoning-deductive and inductive.
2. In deduction, given a statement to be proven which is often called a conjecture or a theorem, validdeductive steps are derived and a proof may or may not be established.
3. Deduction is the application of a general case to a particular case.
4. Inductive reasoning depends on working with each case and developing a conjecture by observingincidence till each and every case is observed.
5. Induction is the generalisation from particular cases or facts.
6. A deductive approach is known as a 'top-down approach'. Given the theorem which is narrowed downto specific hypotheses then to observation. Finally, the hypotheses is tested with specific data to get the confirmation (or not) of original theory.

Observation

Confirmation

7. Inductive reasoning works the other way-moving from specific observations to broader generalisations and theories. Informally, this is known as a 'bottom-up approach'.

8. To prove statements or results formulated in terms of n, where n is a positive integer, a
principle basedon inductive reasoning called the Principle of Mathematical Induction (PMI) is used.
9. PMI is one such tool which can be used to prove a wide variety of mathematical statements.

Each ofsuch statements is assumed as
$P(n)$ associated with a positive integer n for which the correctness of the case $n=1$ is
examined. Then, assuming the truth of $\mathrm{P}(\mathrm{k})$ for some positive integer k, the truth of
$\mathrm{P}(\mathrm{k}+1)$ is established.
10. Let $\mathrm{p}(\mathrm{n})$ denote a mathematical statement such that
(1) $p(1)$ is true.
(2) $p(k+1)$ is true whenever $p(k)$ is true.

Then, the statement is true for all natural numbers n by PMI.
11. PMI is based on the Peano's Axiom.
12. PMI is based on a series of well-defined steps, so it is necessary to verify all of them.
13. PMI can be used to prove the equality, inequalities and divisibility of natural numbers.

Key Formulae

1. Sum of n natural numbers: $1+2+3+\ldots+n=\frac{n(n+1)}{2}$
2. Sum of $n 2$ natural numbers: $1^{2}+2^{2}+3^{2}+\ldots n^{2}=\frac{n(n+1)(2 n+1)}{6}$
3. Sum of odd natural numbers: $1+3+5+7 \ldots \ldots+(2 n-1)=n^{2}$
4. Steps of PMI
5. Denote the given statement in terms of n by $P(n)$.
6. Check whether the proposition is true for $\mathrm{n}=1$.
7. Assume that the proposition result is true for $n=k$.
8. Using $p(k)$, prove that the proposition is true for $p(k+1)$.
9. Rules of inequalities
a. If $a<b$ and $b<c$, then $a<c$.
b. If $a<b$, then $a+c<b+c$.
c. If $a<b$ and $c>0$ which means c is positive, then $a c<b c$.
d. If $\mathrm{a}<\mathrm{b}$ and $\mathrm{c}<0$ which means c is positive, then $\mathrm{ac}>\mathrm{bc}$.

Step1: Let P(n) be a result or statement formulated in terms of n in a given equation Step2: Prove that $P(1)$ is true.
Step3: Assume that $P(k)$ is true.
Step4: Using step 3, prove that $P(k+1)$ is true.
Step5: Thus, $P(1)$ is true and $P(k+1)$ is true whenever $P(k)$ is true
Hence,by the principle of mathematical induction, $P(n)$ is true for all natural numbers n.

Important Questions

Multiple Choice questions-

Question 1. For all $n \in N, 3 n^{5}+5 n^{3}+7 n$ is divisible by
(a) 5
(b) 15
(c) 10
(d) 3

Question 2. $\{1-(1 / 2)\}\{1-(1 / 3)\}\{1-(1 / 4)\} \ldots \ldots . .\{1-1 /(n+1)\}=$
(a) $1 /(n+1)$ for all $n \in N$.
(b) $1 /(n+1)$ for all $n \in R$
(c) $n /(n+1)$ for all $n \in N$.
(d) $n /(n+1)$ for all $n \in R$

Question 3. For all $n \in N, 3^{2 n}+7$ is divisible by
(a) non of these
(b) 3
(c) 11
(d) 8

Question 4. The sum of the series $1+2+3+4+5+$ \qquad n is
(a) $n(n+1)$
(b) $(n+1) / 2$
(c) $n / 2$
(d) $n(n+1) / 2$

Question 5. The sum of the series $1^{2}+2^{2}+3^{2}+$ \qquad n^{2} is
(a) $n(n+1)(2 n+1)$
(b) $n(n+1)(2 n+1) / 2$
(c) $n(n+1)(2 n+1) / 3$
(d) $n(n+1)(2 n+1) / 6$

Question 6. For all positive integers n, the number $n\left(n^{2}-1\right)$ is divisible by:
(a) 36
(b) 24
(c) 6
(d) 16

Question 7. If n is an odd positive integer, then $a^{n}+b^{n}$ is divisible by :
(a) $a^{2}+b^{2}$
(b) $a+b$
(c) $a-b$
(d) none of these

Question 8. $n(n+1)(n+5)$ is a multiple of \qquad for all $n \in N$
(a) 2
(b) 3
(c) 5
(d) 7

Question 9. For any natural number $n, 7^{n}-2^{n}$ is divisible by
(a) 3
(b) 4
(c) 5
(d) 7

Question 10. The sum of the series $1^{3}+2^{3}+3^{3}+$ \qquad n^{3} is
(a) $\{(\mathrm{n}+1) / 2\}^{2}$
(b) $\{n / 2\}^{2}$
(c) $n(n+1) / 2$
(d) $\{n(n+1) / 2\}^{2}$

Very Short:

1.

Short Questions:

1. For every integer n, prove that $7 n-3 n$ divisible by 4 .
2. Prove that $n(n+1)(n+5)$ is multiple of 3 .
3. Prove that $10^{2 n-1}+1$ is divisible by 11 .
4. Prove that $\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots \cdot\left(1+\frac{1}{n}\right)=(n+1)$
5. Prove $1.2+2.3+3.4+_{Z_{-}}+\mathrm{n}(n+1)=\frac{n(n+1)(n+2)}{3}$

Long Questions:

1. Prove $(2 n+7)<(n+3)^{2}$
2. Prove that:

$$
\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+. .+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}
$$

3. Prove $1.2+2.22+3.23+\ldots+n .2^{n}=(n-1)^{2 n+1}+2$
4. Prove that $2.7^{n}+3.5^{n}-5$ is divisible by $24 \forall n \in N$.
5. Prove that $41^{n}-14^{n}$ is a multiple of 27 .

Answer Key:

MCQ:

1. (b) 15
2. (a) $1 /(n+1)$ for all $n \in N$.
3. (d) 8
4. (d) $n(n+1) / 2$
5. (d) $n(n+1)(2 n+1) / 6$
6. (c) 6
7. (b) $a+b$
8. (b) 3
9. (c) 5
10. (d) $\{n(n+1) / 2\}^{2}$

Very Short Answer:

1. $\left(\frac{\pi}{32}\right)^{c}$
2. $39^{\circ} 22^{\prime \prime} 30^{\prime \prime}$
3. $\frac{5 \pi}{12} \mathrm{~cm}$
4. $\sqrt{3}$
5. $\frac{-1}{\sqrt{2}}$
6. $2-\sqrt{3}$
7. $\frac{-4}{5}$
8. 45°
9. $2 \sin 8 \theta \cos 4 \theta$
10. $\sin 6 x-\sin 2 x$

Short Answer:

1. $P(n): 7^{n}-3^{n}$ is divisible by 4

For $\mathrm{n}=1$
$P(1): 7^{1}-3^{1}=4$ which is divisible by Thus, $P(1)$ is true
Let $P(k)$ be true
$7^{k}-3^{k}$ is divisible by 4
$7^{k}-3^{k}=4 \lambda$, where $\lambda \in \mathrm{N}$ (i)
we want to prove that $P(k+1)$ is true whenever $P(k)$ is true
$7^{k+1}-3^{k+1}=7^{k} .7-3^{k} .3$
$=\left(4 \lambda+3^{k}\right) \cdot 7-3^{k} \cdot 3$ (from i)
$=28 \lambda+7.3^{k}-3^{k} .3$
$=28 \lambda+3^{k}(7-3)$
$=4\left(7 \lambda+3^{k}\right)$

Hence

$7^{k+1}-3^{k+1}$ is divisible by 4
thus $P(k+1)$ is true when $P(k)$ is true.
Theref ore by P.M.I. the statement is true for every positive integer n .
2.
$P(n): n(n+1)(n+5)$ is multiple of 3
for $\mathrm{n}=1$
$\mathrm{P}(1): 1(1+1)(1+5)=12$ is multiple of 3
let $P(k)$ be true
$P(k): K(k+1)(k+5)$ is muetiple of 3
$\Rightarrow \mathrm{k}(\mathrm{k}+1)(\mathrm{k}+5)=3 \lambda$ where $\lambda \in \mathrm{N}$ (i)
we want to prove that result is true for $n=k+1$
$P(k+1):(k+1)(k+2)(k+6)$

PRINCIPLE OF MATHEMATICAL INDUCTION

$\Rightarrow(\mathrm{K}+1)(\mathrm{k}+2)(\mathrm{k}+6)=[(k+1)(k+2)](k+6)$
$=k(k+1)(k+2)+6(k+1)(k+2)$
$=k(k+1)(k+5-3)+6(k+1)(k+2)$
$=k(k+1)(k+5)-3 k(k+1)+6(k+1)(K+2)$
$=\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+5)+(\mathrm{k}+1)[6(k+2)-3 k]$
$=k(k+1)(k+5)+(k+1)(3 k+12)$
$=k(k+1)(k+5)+3(k+1)(k+4)$
$=3 \lambda+3(\mathrm{k}+1)(\mathrm{k}+4)($ from i)
$=3[\lambda+(K+1)(K+4)]$ which is multiple of three
Hence $P(k+1)$ is multiple of 3 .
3.
$P(n): 10^{2 n-1}+1$ is divisible by 11
for $\mathrm{n}=1$
$P(1)=10^{2 \times 1-1}+1=11$ is divisible by 11 Hence result is true for $n=1$
let $P(k)$ be true
$P(k): 10^{2 x-1}+1$ is divisible by 111
$\Rightarrow 10^{2 * \times 1}+1=11 \lambda$ where $\lambda \in \mathrm{N}(\mathrm{i})$
we want to prove that result is true for $n=k+$
$=10^{2(k+1)-1}+1=10^{2 k+2-1}+1$
$=10^{2 k+1}+1$
$=10^{2 k} \cdot 10^{1}+1$
$=(110 \lambda-10) \cdot 10+1($ from i$)$
$=1100 \lambda-100+1$
$=1100 \lambda-99$
$=11(100 \lambda-9)$ is divisible by 11
Hence by P.M.I. $P(k+1)$ is true whenever $P(k)$ is true.
4.
$\operatorname{let} P(n):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{n}\right)=(n+1)$
for $\mathrm{n}=1$
$\mathrm{P}(1):\left(1+\frac{1}{1}\right)=(1+1)=2$
which is true
let $\mathrm{P}(\mathrm{k})$ be true
$\mathrm{P}(\mathrm{k}):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{k}\right)=(k+1)$
we want to prove that $\mathrm{P}(\mathrm{k}+1)$ is true
$\mathrm{P}(\mathrm{k}+1):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right) \cdot \cdot\left(1+\frac{1}{k+1}\right)=(k+2)$
L.H.S. $=\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right) \ldots .\left(1+\frac{1}{k}\right)\left(1+\frac{1}{k+1}\right)$
$=(k+1)\left(1+\frac{1}{k+1}\right) \quad[\operatorname{from}(1)]$
$=(\mathrm{k}+1)\left(\frac{k+1+1}{K+1}\right)$
$=(\mathrm{K}+2)$
thus $\mathrm{P}(\mathrm{k}+1)$ is true whenever
$\mathrm{P}(\mathrm{K})$ is true.
5.
$p(n): 1.2+2.3+-n(n+1)=\frac{n(n+1)(n+2)}{3}$
for $n=1$
$p(1): 1(1+1)=\frac{1(1+1)(1+2)}{3}$
$p(1)=2=2$
hence $p(1)$ be true
$p(k): 1.2+2.3+\cdots+k(k+1)=\frac{k(k+1)(k+2)}{3}$.
we want to prove that
$p(k+1)$:
$1.2+2.3+--+(k+1)(k+2)=\frac{(k+1)(k+2)(k+3)}{3}$
L.H.S.
$=1.2+2.3+---+k(k+1)+(k+1)(k+2)$
$=\frac{k(k+1)(k+2)}{3}+\frac{(k+1)(k+2)}{1} \quad[$ from $(i)]$
$\frac{k(k+1)(k+2)+3(k+1)(k+2)}{3}$

$$
\frac{(k+1)(k+2)[k+3]}{3}
$$

hence $\mathrm{p}(k+1)$ is true whenenes $p(k)$ is true

Long Answer:

1.

$p(n):(2 n+7)<(n+3)^{2}$
for $n=1$
$9<(4)^{2}$
$9<16$
which is true
let $\mathrm{p}(k)$ be true
$(2 k+7)<(k+3)^{2}$
now
$2(k+1)+7=(2 k+7)+2$
$<(k+3)^{2}+2=k^{2}+6 k+11$
$<k^{2}+8 k+16=(k+4)^{2}$
$=(k+3+1)^{2}$
$\therefore p(k+1): 2(k+1)+7<(k+1+3)^{2}$
$\Rightarrow p(k+1)$ is true, when ever $p(k)$ is true
hence by $P M I p(k)$ is true for all $n \in N$
2.
$p(n): \frac{1}{1.4}+\frac{1}{4.7}+---+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}$
for $n=1$
$p(1): \frac{1}{(3-2)(3+1)}=\frac{1}{(3+1)}=\frac{1}{4}$
which is true
let $p(k)$ be true
$p(k): \frac{1}{1.4}+\frac{1}{4.7}+---+\frac{1}{(3 k-2)(3 k+1)}=\frac{k}{(3 k+1)}$.
we want to prove that $\mathrm{p}(k+1)$ is true

$$
p(k+1): \frac{1}{1.4}+\frac{1}{4.7}+---+\frac{1}{(3 k+1)(3 k+4)}=\frac{k+1}{(3 k+4)}
$$

L.H.S.

$$
\begin{aligned}
& =\frac{1}{1.4}+\frac{1}{4.7}+---+\frac{1}{(3 k-2)(3 k+1)}+\frac{1}{(3 k+1)(3 k+4)} \\
& =\frac{k}{3 k+1}+\frac{1}{(3 k+1)(3 k+4)} \quad[\text { from } \ldots \ldots .(i)] \\
& =\frac{k(3 k+4)+1}{(3 k+1)(3 k+4)} \\
& =\frac{3 k^{2}+4 k+1}{(3 k+1)(3 k+4)}=\frac{(3 k+1)(k+1)}{(3 k+1)(3 k+4)}
\end{aligned}
$$

$$
p(k+1) \text { is true whenever } p(k) \text { is true. }
$$

3.

$$
\begin{aligned}
& p(n): 1.2+2.2^{2}+3.2^{3}+---+n .2^{n}=(n-1) 2^{n+1}+2 \\
& p(n): 1.2+2.2^{2}+3.2^{3}+---+n .2^{n}=(n-1) 2^{n+1}+2
\end{aligned}
$$

for $n=1$
$p(1): 1.2^{1}=(1-1) 2^{2}+2$
$2=2$ which is true
let $p(k)$ be true

$$
\begin{equation*}
p(k): 1.2+2.2^{2}+\cdots--k .2^{k}=(k-1) 2^{k+1}+2 \tag{i}
\end{equation*}
$$

we want to prove that $p(k+1)$ is true
$p(k+1) \cdot 1.2+2.2^{2}+---+(k+1) 2^{k+1}=k \cdot 2^{k+2}+2$
L.H.S.

$$
\begin{align*}
& 1.2+2.2^{2}+-+k \cdot 2^{k}+(k+1) 2^{k+1} \tag{i}\\
& =(k-1) 2^{k+1}+2+(k+1) 2^{k+1} \mathrm{c} \\
& =2^{k+1}(k-1+k+1)+2 \\
& =2^{k+2} k+2
\end{align*}
$$

This $p(k+1)$ is true whenever $p(k)$ is true
4. $P(n): 2.7^{n}+3.5^{n}-5$ is divisible by 24
for $\mathrm{n}=1$
$P(1): 2.7^{1}+3.5^{1}-5=24$ is divisible by 24

PRINCIPLE OF MATHEMATICAL INDUCTION

Hence result is true for $\mathrm{n}=1$
Let $P(K)$ be true
$P(K): 2.7^{K}+3.5^{K}-5$
$\Rightarrow 2.7^{\mathrm{K}}+3.5^{\mathrm{K}}-5=24 \lambda$ when $\lambda \in \mathrm{N}$
we want to prove that $P(K+!)$ is True whenever $P(K)$ is true
$2.7^{k+1}+3.5^{k+1}-5=2.7^{k} .7^{1}+3.5^{*} .5^{1-5}$
$=7\left[2.7^{K}+3.5^{K}-5-3.5^{K}+5\right]+3.5^{\mathrm{K}} .5^{1}-5$
$=7\left[24 \lambda-3.5^{K}+5\right]+15.5^{\mathrm{K}}-5$ (from i)
$=7 \times 24 \lambda-21.5^{\mathrm{K}}+35+15.5^{\mathrm{K}}-5$
$=7 \times 24 \lambda-6.5^{\mathrm{K}}+30$
$=7 \times 24 \lambda-6\left(5^{K}-5\right)$
$=7 \times 24 \lambda-6.4 p\left[\because 5^{K}-5\right.$ is multiple of 4$]$
$=24(7 \lambda-p), \quad 24$ is divisible by 24
Hence by PMIp (n) is true for all $\mathrm{n} \in \mathrm{N}$.
5. $P(n): 41^{n}-14^{n}$ is a multiple of 27
for $\mathrm{n}=1$
$P(1): 41^{1}-14=27$, which is a multiple of 27
Let $P(K)$ be True
P(K) : $41^{\mathrm{K}}-14^{\mathrm{K}}$
$\Rightarrow 41^{\mathrm{K}}-14^{\mathrm{K}}=27 \lambda$, where $\lambda \in \mathbb{N}$
we want to prove that result is true for $\mathrm{n}=\mathrm{K}+1$
$41^{k+1}-14^{k+1}=41^{k} .41-14^{k} .14$
$=\left(27 \lambda+14^{K}\right) .41-14^{K} .14($ from i$)$
$=27 \lambda .41+14^{K} .41-14^{K} .14$
$=27 \lambda .41+14^{X}(41-14)$
$=27 \lambda .41+14^{K}(27)$
$=27\left(41 \lambda+14^{K}\right) \quad$ is a multiple of 27
Hence by PMIp (n) is true for ace $n \in N$.

