# **MATHEMATICS**

**Chapter 1: Relation and Function** 



#### RELATIONS AND FUNCTIONS

# **Top Concepts in Relations**

#### 1. Introduction to Relation and no. of relations

- A relation R between two non-empty sets A and B is a subset of their Cartesian product A × B.
- If A = B, then the relation R on A is a subset of A × A.
- The total number of relations from a set consisting of m elements to a set consisting of n elements is 2<sup>mn</sup>.
- If (a, b) belongs to R, then a is related to b and is written as 'a R b'. If (a, b) does not belong to R, then a is not related to b and it is written as 'a R b'.

#### 2. Co-domain and Range of a Relation

Let R be a relation from A to B. Then the 'domain of  $R' \subset A$  and the 'range of  $R' \subset B$ . Codomain is either set B or any of its superset or subset containing range of R.

## 3. Types of Relations

A relation R in a set A is called an empty relation if no element of A is related to any element of A, i.e.,  $R = \phi \subset A \times A$ .

A relation R in a set A is called a universal relation if each element of A is related to every element of A, i.e.,  $R = A \times A$ .

#### 4. A relation R on a set A is called:

- a. Reflexive, if  $(a, a) \in R$  for every  $a \in A$ .
- b. Symmetric, if  $(a_1, a_2) \in R$  implies that  $(a_2, a_1) \in R$  for all  $a_1, a_2 \in A$ .
- c. Transitive, if  $(a_1, a_2) \in R$  and  $(a_2, a_3) \in R$  implies that  $(a_1, a_3) \in R$  for all  $a_1, a_2, a_3 \in A$ .

#### 5. Equivalence Relation

• A relation R in a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive.

- An empty relation R on a non-empty set X (i.e., 'a R b' is never true) is not an equivalence relation, because although it is vacuously symmetric and transitive, but it is not reflexive (except when X is also empty).
- **6.** Given an arbitrary equivalence relation R in a set X, R divides X into mutually disjoint subsets S<sub>i</sub> called partitions or subdivisions of X provided:
  - a. All elements of S, are related to each other for all i.
  - b. No element of Si is related to any element of St if  $i \neq j$ .

$$\bigcup_{j=1}^{n} S_{j} = X \text{ and } S_{i} \cap S_{j} = \phi \text{ if } i \neq j.$$

The subsets St are called equivalence classes.

#### 7. Union, Intersection and Inverse of Equivalence Relations

- a. If R and S are two equivalence relations on a set A, R  $\cap$  S is also an equivalence relation on A.
- b. The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.
- c. The inverse of an equivalence relation is an equivalence relation.

# **Top Concepts in Functions**

#### 1. Introduction to functions

A function from a non-empty set A to another non-empty set B is a correspondence or a rule which associates every element of A to a unique element of B written as  $f : A \rightarrow B$  such that f(x) = y for all  $x \in A$ ,  $y \in B$ .

All functions are relations, but the converse is not true.

## 2. Domain, Co-domain and Range of a Function

- If f: A → B is a function, then set A is the domain, set B is the co-domain and set {f(x): x ∈ A) is the range of f.
- The range is a subset of the co-domain.
- A function can also be regarded as a machine which gives a unique output in set B corresponding to each input from set A.

• If A and B are two sets having m and n elements, respectively, then the total number of functions from A to B is n<sup>m</sup>.

#### 3. Real Function

- A function  $f: A \rightarrow B$  is called a real-valued function if B is a subset of R.
- If A and B both are subsets of R, then 'f' is called a real function.
- While describing real functions using mathematical formula, x (the input) is the independent variable and y (the output) is the dependent variable.
- The graph of a real function 'f' consists of points whose co-ordinates (x, y) satisfy y = f(x), for all x ∈ Domain(f).

#### 4. Vertical line test

A curve in a plane represents the graph of a real function if and only if no vertical line intersects it more than once.

#### 5. One-one Function

- A function  $f: A \rightarrow B$  is one-to-one if for all  $x, y \in A$ ,  $f(x) = f(y) \Rightarrow x = y$  or  $x \neq y \Rightarrow f(x) \neq f(y)$ .
- A one-one function is known as an injection or injective function. Otherwise, f is called many-one.

#### 6. Onto Function

- A function f: A → B is an onto function, if for each b ∈ B, there is at least one a ∈ A such that f(a) = b, i.e., if every element in B is the image of some element in A, then f is an onto or surjective function.
- For an onto function, range = co-domain.
- A function which is both one-one and onto is called a bijective function or a bijection.
- A one-one function defined from a finite set to itself is always onto, but if the set is infinite, then it is not the case.

#### 7. Let A and B be two finite sets and $f: A \rightarrow B$ be a function.

- If f is an injection, then  $n(A) \le n(B)$ .
- If f is a surjection, then  $n(A) \ge n(B)$ .
- If f is a bijection, then n(A) = n(B).
- 8. If A and B are two non-empty finite sets containing m and n elements, respectively, then

Number of functions from A to  $B = n^{m}$ .

- Number of one-one function from A to B =  $\begin{cases} {}^{n}C_{m} \times m!, & \text{if } n \geq m \\ 0, & \text{if } n < m \end{cases}$
- Number of onto functions from A to B  $=\begin{cases} \sum_{r=1}^{n} \left(-1\right)^{n-r} & {}^{n}C_{r}r^{m}, \text{ if } m \geq n \\ & 0, \text{ if } m < n \end{cases}$
- Number of one-one and onto functions from A to B =  $\begin{cases} n!, & \text{if } m=n \\ 0, & \text{if } m \neq r \end{cases}$
- **9.** If a function  $f: A \to B$  is not an onto function, then  $f: A \to f(A)$  is always an onto function.

## **10.Composition of Functions**

Let  $f : A \to B$  and  $g : B \to C$  be two functions. The composition of f and g, denoted by g o f, is defined as the function g o f:  $A \to C$  and is given by g o f(x):  $A \to C$  defined by g o f(x) =  $g(f(x)) \forall x \in A$ .



- Composition of f and g is written as g o f and not f o g.
- g o f is defined if the range of  $f \subseteq domain of g$ , and f o g is defined if the range of  $g \subseteq domain of f$ .
- Composition of functions is not commutative in general i.e., f o  $g(x) \neq g$  o f(x).
- Composition is associative i.e., if f: X → Y, g: Y → Z and h: Z → S are functions, then h o
  (g o f) = (h o g) o f.
- The composition of two bijections is a bijection.

#### 11.Inverse of a Function

- Let  $f: A \rightarrow B$  is a bijection, then  $g: B \rightarrow A$  is inverse of f if  $f(x) = y \Leftrightarrow g(y) = x$  OR g of  $f = I_A$  and f o  $g = I_B$
- If g o f =  $I_A$  and f is an injection, then g is a surjection.
- If f o g' l<sub>B</sub> and f is a surjection, then g is an injection.
- **12.** Let  $f: A \rightarrow B$  and  $g: B \rightarrow C$  be two functions. Then
  - g o f: A  $\rightarrow$  C is onto  $\Rightarrow$  g: B  $\rightarrow$  C is onto.
  - g o f: A  $\rightarrow$  C is one-one  $\Rightarrow$  f:A  $\rightarrow$  B is one-one.

(4)

- g o f: A  $\rightarrow$  C is onto and g: B  $\rightarrow$  C is one-one  $\Rightarrow$  f:A  $\rightarrow$  B is onto.
- g o f: A  $\rightarrow$  C is one-one and f:A  $\rightarrow$  B is onto  $\Rightarrow$  g: B  $\rightarrow$  C is one-one.

#### 13. Invertible Function

- A function  $f: X \to Y$  is defined to be invertible if there exists a function  $g: Y \to X$  such that gof  $I_x$  and fog =  $I_y$ .
- The function g is called the inverse of f and is denoted by f<sup>-1</sup>. If f is invertible, then f must be one-one and onto, and conversely, if f is one-one and onto, then f must be invertible.
- If f: A → B and g: B → C are one-one and onto, then g o f: A → C is also one-one and onto. But if g o f is one-one, then only f is one-one and g may or may not be one-one. If g o f is onto, then g is onto and f may or may not be onto.
- Let  $f: X \to Y$  and  $g: Y \to Z$  be two invertible functions. Then  $g \circ f$  is also invertible with  $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ .
- If f: R  $\rightarrow$  R is invertible, f(x) = y, then f<sup>-1</sup> (y) = x and (f<sup>-1</sup>)<sup>-1</sup> is the function f itself.

# **Binary Operations**

- 1. A binary operation \* on a set A is a function from A × A to A.
- 2. If \* is a binary operation on a set S, then S is closed with respect to \*.

## 3. Binary operations on R

- Addition, subtraction and multiplication are binary operations on R, which is the set of real numbers.
- Division is not binary on R; however, division is a binary operation on R {0} which is the set of non-zero real numbers.

# 4. Laws of Binary Operations

- A binary operation \* on the set X is called commutative, if a \* b = b \* a, for every a, b ∈ X.
- A binary operation \* on the set X is called associative, if a (b\*c) = (a\*b)\*c, for every a, b, c ∈ X.
- An element e ∈ A is called an identity of A with respect to \* if for each a ∈ A, a \* e = a = e
   \* a.
- The identity element of (A, \*) if it exists, is unique.

#### 5. Existence of Inverse

Given a binary operation \* from  $A \times A \rightarrow A$  with the identity element e in A, an element a e A is said to be invertible with respect to the operation \*, if there exists an element b in

A such that a \* b = e = b \* a and b is called the inverse of a and is denoted by  $a^{-1}$ .

**6.** If the operation table is symmetric about the diagonal line, then the operation is commutative.



The operation \* is commutative.

## 7. Binary Operation on Natural Numbers

Addition '+' and multiplication '-' on N, the set of natural numbers, are binary operations. However, subtraction '—' and division are not, because  $(4, 5) = 4 - 5 = -1 \in \mathbb{N}$  and  $4/5 = .8 \in \mathbb{N}$ .

#### 8. Number of Binary Operations

- Let S be a finite set consisting of n elements. Then  $S \times S$  has  $n^2$  elements.
- The total number of functions from a finite set A to a finite set B is  $[n(B)]^{n(A)}$ . Therefore, total number of binary operations on S is  $n^{n^2}$ .
- The total number of commutative binary operations on a set consisting of n elements is  $n \frac{n(n-1)}{2}$ .

Class: 12th Maths
Chapter- 1: Relations and Functions



# **Important Questions**

# **Multiple Choice questions-**

1. Let R be the relation in the set (1, 2, 3, 4), given by:

$$R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}.$$

Then:

- (a) R is reflexive and symmetric but not transitive
- (b) R is reflexive and transitive but not symmetric
- (c) R is symmetric and transitive but not reflexive
- (d) R is an equivalence relation.
- 2. Let R be the relation in the set N given by:  $R = \{(a, b): a = b 2, b > 6\}$ . Then:
- (a)  $(2, 4) \in R$
- (b)  $(3, 8) \in R$
- (c)  $(6, 8) \in R$
- (d)  $(8, 7) \in R$ .
- 3. Let  $A = \{1, 2, 3\}$ . Then number of relations containing  $\{1, 2\}$  and  $\{1, 3\}$ , which are reflexive and symmetric but not transitive is:
- (a) 1
- (b) 2
- (c) 3
- (d) 4.
- 4. Let A = (1, 2, 3). Then the number of equivalence relations containing (1, 2) is
- (a) 1
- (b) 2
- (c) 3
- (d) 4.

- 5. Let  $f: R \to R$  be defined as  $f(x) = x^4$ . Then
- (a) f is one-one onto
- (b) f is many-one onto
- (c) f is one-one but not onto
- (d) f is neither one-one nor onto.
- 6. Let  $f: R \to R$  be defined as f(x) = 3x. Then
- (a) f is one-one onto
- (b) f is many-one onto
- (c) f is one-one but not onto
- (d) f is neither one-one nor onto.
- 7. If f: R  $\rightarrow$  R be given by  $f(x) = (3 x^3)^{1/3}$ , then  $f_0 f(x)$  is
- (a)  $x^{1/3}$
- (b)  $x^{3}$
- (c) x
- (d)  $3 x^3$ .
- 8. Let f: R {- $\frac{4}{3}$ }  $\rightarrow$  R be a function defined as: f(x) =  $\frac{4x}{3x+4}$ , x  $\neq$  - $\frac{4}{3}$ . The inverse of f is map g: Range f  $\rightarrow$  R -{- $\frac{4}{3}$ } given by
- (a) g(y) =  $\frac{3y}{3-4y}$
- (b)  $g(y) = \frac{4y}{4-3y}$
- (c) g(y) =  $\frac{4y}{3-4y}$
- (d) g(y) =  $\frac{3y}{4-3y}$
- 9. Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is
- (a) Reflexive and symmetric

- (b) Transitive and symmetric
- (c) Equivalence
- (d) Reflexive, transitive but not symmetric.
- 10. Set A has 3 elements, and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is:
- (a) 144
- (b) 12
- (c) 24
- (d) 64

# **Very Short Questions:**

- 1. If  $R = \{(x, y) : x + 2y = 8\}$  is a relation in N, write the range of R.
- 2. Show that a one-one function:

 $f \{1, 2, 3\} \rightarrow \{1, 2, 3\}$  must be onto. (N.C.E.R.T.)

- 3. What is the range of the function  $f(x) = \frac{|x-1|}{|x-1|}$ ? (C.B.S.E. 2010)
- 4. Show that the function  $f: N \to N$  given by f(x) = 2x is one-one but not onto. (N.C.E.R.T.)
- 5. If  $f: R \to R$  is defined by f(x) = 3x + 2 find f(f(x)). C.B.S.E. 2011 (F))
- 6. If  $f(x) = \frac{x}{x-1}$ ,  $x \ne 1$  then find fof. (N.C.E.R.T)
- 7. If f: R  $\rightarrow$  R is defined by  $f(x) = (3 x^3)^{1/3}$ , find fof (x)
- 8. Are f and q both necessarily onto, if gof is onto? (N.C.E.R.T.)

# **Short Questions:**

1. Let A be the set of all students of a Boys' school. Show that the relation R in A given by:

 $R = \{(a, b): a \text{ is sister of b}\}\$  is an empty relation and the relation R' given by :

 $R' = \{(a, b) : \text{the difference between heights of a and b is less than 3 metres} \text{ is an universal relation. (N.C.E.R.T.)}$ 

2. Let  $f: X \to Y$  be a function. Define a relation R in X given by :

$$R = \{(a,b): f(a) = f(b)\}.$$

Examine, if R is an equivalence relation. (N.C.E.R.T.)

3. Let R be the relation in the set Z of integers given by:

$$R = \{(a, b): 2 \text{ divides } a - b\}.$$

Show that the relation R is transitive. Write the equivalence class [0]. (C.B.S.E. Sample Paper 2019-20)

4. Show that the function:

$$f: N \rightarrow N$$

given by f(1) = f(2) = 1 and f(x) = x - 1, for every x > 2 is onto but not one-one. (N.C.E.R.T.)

5. Find gof and fog, if:

 $f: R \to R$  and  $g: R \to R$  are given by  $f(x) = \cos x$  and  $g(x) = 3x^2$ . Show that  $g \circ f \neq f \circ g$ . (N. C.E.R. T.)

6. If 
$$f(x) = \frac{4x+3}{6x-4}$$
,  $x \neq \frac{2}{3}$  find fof(x)

- 7. Let  $A = N \times N$  be the set of ail ordered pairs of natural numbers and R be the relation on the set A defined by (a, b) R (c, d) iff ad = bc. Show that R is an equivalence relation.
- 8. Let  $f: R \to R$  be the Signum function defined as:

$$f(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

and  $g: R \to R$  be the Greatest Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0,1]?

# **Long Questions:**

1. Show that the relation R on R defined as  $R = \{(a, b): a \le b\}$ , is reflexive and transitive but not symmetric.

(11)

- 2. Prove that function  $f: N \to N$ , defined by  $f(x) = x^2 + x + 1$  is one-one but not onto. Find inverse of  $f: N \to S$ , where S is range of f.
- 3. Let  $A = \{x \in Z : 0 \le x \le 12\}$ .

Show that  $R = \{(a, b) : a, b \in A; |a - b| \text{ is divisible by 4} \}$  is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class [2]. (C.B.S.E 2018)

4. Prove that the function  $f: [0, \infty) \to R$  given by  $f(x) = 9x^2 + 6x - 5$  is not invertible. Modify the co-domain of the function f to make it invertible, and hence find f-1. (C.B.S.E. Sample Paper 2018-19

# **Assertion and Reason Questions-**

- **1.** Two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes(a), (b), (c) and (d) as given below.
  - a) Both A and R are true and R is the correct explanation of A.
  - b) Both A and R are true but R is not the correct explanation of A.
  - c) A is true but R is false.
  - d) A is false and R is also false.

**Assertion(A):** Let L be the set of all lines in a plane and R be the relation in L defined as  $R = \{(L1, L2): L1 \text{ is perpendicular to } L2\}.R$  is not equivalence realtion.

Reason (R): R is symmetric but neither reflexive nor transitive

- **2.** Two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes(a), (b), (c) and (d) as given below.
  - a) Both A and R are true and R is the correct explanation of A.
  - b) Both A and R are true but R is not the correct explanation of A.
  - c) A is true but R is false.
  - d) A is false and R is also false.

**Assertion (A):** =  $\{(T1, T2): T1 \text{ is congruent to } T2\}$ . Then R is an equivalence relation.

**Reason(R):** Any relation R is an equivalence relation, if it is reflexive, symmetric and transitive.

# **Case Study Questions-**

**1.** Consider the mapping  $f: A \rightarrow B$  is defined by f(x) = x - 1 such that f is a bijection.

Based on the above information, answer the following questions.

- (i) Domain of f is:
  - a)  $R \{2\}$
  - b) R
  - c)  $R \{1, 2\}$
  - d)  $R \{0\}$
- (ii) Range of f is:
  - a) R
  - b) R {2}
  - c) R {0}
  - d) R {1, 2}
- (iii) If g: R  $\{2\} \rightarrow$  R  $\{1\}$  is defined by g(x) = 2f(x) 1, then g(x) in terms of x is:
  - a.  $\frac{x+2}{x}$
  - b.  $\frac{x+1}{x-2}$
  - c.  $\frac{x-2}{x}$
  - d.  $\frac{x}{x-2}$
- (iv) The function g defined above, is:
  - a) One-one
  - b) Many-one
  - c) into
  - d) None of these
- (v)A function f(x) is said to be one-one if.
  - a.  $f(x_1) = f(x_2) \Rightarrow -x_1 = x_2$
  - b.  $f(-x_1) = f(-x_2) \Rightarrow -x_1 = x_2$
  - c.  $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
  - d. None of these

- **2.** A relation R on a set A is said to be an equivalence relation on A iff it is:
  - **I.** Reflexive i.e.,  $(a, a) \in R \forall a \in A$ .
- **II.** Symmetric i.e.,  $(a, b) \in R \Rightarrow (b, a) \in R \forall a, b \in A$ .
- **III.** Transitive i.e.,  $(a, b) \in R$  and  $(b, c) \in R \Rightarrow (a, c) \in R \forall a, b, c \in A$ .

Based on the above information, answer the following questions.

- (i) If the relation  $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$  defined on the set  $A = \{1, 2, 3\}$ , then R is:
  - a) Reflexive
  - b) Symmetric
  - c) Transitive
  - d) Equivalence
- (ii) If the relation  $R = \{(1, 2), (2, 1), (1, 3), (3, 1)\}$  defined on the set  $A = \{1, 2, 3\}$ , then R is:
  - a) Reflexive
  - b) Symmetric
  - c) Transitive
  - d) Equivalence
- (iii) If the relation R on the set N of all natural numbers defined as  $R = \{(x, y): y = x + 5 \text{ and } x < 4\}$ , then R is:
  - a) Reflexive
  - b) Symmetric
  - c) Transitive
  - d) Equivalence
- (iv) If the relation R on the set  $A = \{1, 2, 3, \dots, 13, 14\}$  defined as  $R = \{(x, y): 3x y = 0\}$ , then R is:
  - a) Reflexive
  - b) Symmetric
  - c) Transitive
  - d) Equivalence
- (v) If the relation R on the set  $A = \{I, 2, 3\}$  defined as  $R = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$ , then R is:
  - a) Reflexive only

- b) Symmetric only
- c) Transitive only
- d) Equivalence

# **Answer Key-**

# **Multiple Choice questions-**

- (b) R is reflexive and transitive but not symmetric
- (c)  $(6, 8) \in R$
- (a) 1
- (b) 2
- (d) f is neither one-one nor onto.
- (a) f is one-one onto
- (c) x

(b) 
$$g(y) = \frac{4y}{4-3y}$$

- (b) Transitive and symmetric
- (c) 24

# **Very Short Answer:**

1. Solution: Range of  $R = \{1, 2, 3\}$ .

[: When x = 2, then y = 3, when x = 4, then y = 2, when x = 6, then y = 1]

2. Solution: Since 'f' is one-one,

 $\therefore$  under 'f', all the three elements of  $\{1, 2, 3\}$  should correspond to three different elements of the co-domain  $\{1, 2, 3\}$ .

Hence, 'f' is onto.

3. Solution: When x > 1,

than 
$$f(x) = \frac{x-1}{x-1} = 1$$
.

When x < 1,

than 
$$f(x) = \frac{-(x-1)}{x-1} = -1$$

Hence, 
$$Rf = \{-1, 1\}$$
.

#### 4. Solution:

Let 
$$x_1, x_2 \in \mathbb{N}$$
.

Now, 
$$f(x_1) = f(x_2)$$

$$\Rightarrow 2x_1 = 2x_2$$

$$\Rightarrow$$
 x<sub>1</sub> = x<sub>2</sub>

 $\Rightarrow$  f is one-one.

Now, f is not onto.

 $\because$  For  $1 \in \mathbb{N}$ , there does not exist any  $x \in \mathbb{N}$  such that f(x) = 2x = 1.

Hence, f is ono-one but not onto.

#### 5. Solution:

$$f(f(x)) = 3 f(x) + 2$$

$$=3(3x+2)+2=9x+8$$

## 6. Solution:

$$fof(x) = f(f(x)) = \frac{f(x)}{f(x) - 1}$$

$$=\frac{\frac{x}{x-1}}{\frac{x}{x-1}-1} = \frac{x}{x-x+1}$$

$$=\frac{x}{1}=x.$$

## 7. Solution:

$$f_0f(x) = f(f(x)) = (3-(f(x))^3)^{1/3}$$

$$= (3 - ((3 - x^3)^{1/3})^3)^{1/3}$$

$$= (3 - (3 - x^3))^{1/3} = (x^3)^{1/3} = x.$$

#### 8. Solution:

Consider f:  $\{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$ 

and g:  $\{1, 2, 3, 4\} \rightarrow \{1, 2.3\}$  defined by:

$$f(1) = 1$$
,  $f(2) = 2$ ,  $f(3) = f(4) = 3$ 

$$g(1) = 1, g(2) = 2, g(3) = g(4) = 3.$$

∴ gof = g (f(x)) {1, 2,3}, which is onto

But f is not onto.

[: 4 is not the image of any element]

# **Short Answer:**

#### 1. Solution:

(i) Here  $R = \{(a, b): a \text{ is sister of b}\}.$ 

Since the school is a Boys' school,

: no student of the school can be the sister of any student of the school.

Thus  $R = \Phi$  Hence, R is an empty relation.

(ii) Here  $R' = \{(a,b): \text{ the difference between heights of a and b is less than 3 metres}\}$ .

Since the difference between heights of any two students of the school is to be less than 3 metres,

 $\therefore$  R' = A x A. Hence, R' is a universal relation.

## 2. Solution:

For each  $a \in X$ ,  $(a, a) \in R$ .

Thus R is reflexive. [: f(a) = f(a)]

Now  $(a, b) \in R$ 

$$\Rightarrow$$
 f(a) = f(b)

$$\Rightarrow$$
 f(b) = f (a)

$$\Rightarrow$$
 (b, a)  $\in$  R.

Thus R is symmetric.

And  $(a, b) \in R$ 

and  $(b, c) \in R$ 

$$\Rightarrow$$
 f(a) = f(b)

and 
$$f(b) = f(c)$$

$$\Rightarrow$$
 f(a)= f(c)

$$\Rightarrow$$
 (a, c)  $\in$  R.

Thus R is transitive.

Hence, R is an equivalence relation.

#### 3. Solution:

Let 2 divide (a - b) and 2 divide (b - c), where  $a,b,c \in Z$ 

$$\Rightarrow$$
 2 divides [(a – b) + (b – c)]

$$\Rightarrow$$
 2 divides (a – c).

Hence, R is transitive.

And 
$$[0] = \{0, \pm 2, \pm 4, \pm 6, ...\}.$$

#### 4. Solution:

Since 
$$f(1) = f(2) = 1$$
,

∴ 
$$f(1) = f(2)$$
, where  $1 \neq 2$ .

∴ 'f' is not one-one.

Let 
$$y \in N$$
,  $y \ne 1$ ,

we can choose x as y + 1 such that f(x) = x - 1

$$= y + 1 - 1 = y.$$

Also 
$$1 \in \mathbb{N}$$
,  $f(1) = 1$ .

Thus 'f' is onto.

Hence, 'f' is onto but not one-one.

# 5. Solution:

We have:

$$f(x) = \cos x \text{ and } g(x) = 3x^2.$$

$$\therefore gof(x) = g(f(x)) = g(cos x)$$

$$= 3 (\cos x)^2 = 3 \cos^2 x$$

and fog (x) = 
$$f(g(x)) = f(3x^2) = \cos 3x^2$$
.

Hence, gof  $\neq$  fog.

#### 6. Solution:

We have: 
$$\frac{4x+3}{6x-4}$$
 ...(1)

$$\therefore$$
 fof(x) - f (f (x))

$$=\frac{4f(x)+3}{6f(x)-4}$$

$$= \frac{4\left(\frac{4x+3}{6x-4}\right)+3}{6\left(\frac{4x+3}{6x-4}\right)-4}$$
 [Using (1)]

$$= \frac{16x + 12 + 18x - 12}{24x + 18 - 24x + 16}$$

$$=\frac{34x}{34}=x.$$

## 7. Solution:

Given: (a, b) R (c, d) if and only if ad = bc.

(I) (a, b) R (a, b) iff ab – ba, which is true.

[: ab = ba  $\forall$  a, b ∈ N]

Thus, R is reflexive.

(II) (a, b) R (c,d)  $\Rightarrow$  ad = bc

$$(c, d) R (a, b) \Rightarrow cb = da.$$

But cb = be and da = ad in N.

$$\therefore (a, b) R (c, d) \Rightarrow (c, d) R (a, b).$$

Thus, R is symmetric.

$$\Rightarrow$$
 ad = bc ...(1)

$$\Rightarrow$$
 cf = de ... (2)

Multiplying (1) and (2), (ad). (cf) - (be), (de)

$$\Rightarrow$$
 af = be

$$\Rightarrow$$
 (a,b) = R(e,f).

Thus, R is transitive.

Thus, R is reflexive, symmetric and transitive.

Hence, R is an equivalence relation.

## 8. Solution:

For  $x \in (0,1]$ .

$$(fog)(x) = f(g(x)) = f([x])$$

$$= \begin{cases} f(0); & \text{if } 0 < x < 1 \\ f(1); & \text{if } x = 1 \end{cases}$$

$$\Rightarrow f(g(x)) = \begin{cases} 0; & \text{if } 0 < x < 1 \\ 1; & \text{if } x = 1 \end{cases} \dots (1)$$

And (gof) 
$$(x) = g(f(x)) = g(1)$$

$$[\because f(x) = 1 \ \forall \ x > 0]$$

$$\Rightarrow (gof)(x) = 1 \forall x \in (0, 1] ...(2)$$

From (1) and (2), (fog) and (gof) do not coincide in (0, 1].

# **Long Answer:**

#### 1. Solution:

We have:  $R = \{(a, b)\} = a \le b\}$ .

Since,  $a \le a \ \forall \ a \in R$ ,

∴ 
$$(a, a) \in R$$
,

Thus, R reflexive.

Now,  $(a, b) \in R$  and  $(b, c) \in R$ 

 $\Rightarrow$  a  $\leq$  b and b  $\leq$  c

$$\Rightarrow$$
 a  $\leq$  c

$$\Rightarrow$$
 (a, c)  $\in$  R.

Thus, R is transitive.

But R is not symmetric

 $[: (3, 5) \in R \text{ but } (5, 3) \notin R \text{ as } 3 \le 5 \text{ but } 5 > 3]$ 

Solution:

Let  $x_1, x_2 \in \mathbb{N}$ .

Now,  $f(x_1) = f(x_2)$ 

$$\Rightarrow x^2 + x_1 + 1 = x^2 + x_2 + 1$$

$$\Rightarrow$$
  $x_1^2 + x_1 = x_2^2 + x_2$ 

$$\Rightarrow$$
  $(x^2_1 - x^2_2) + (x_1 - x_2) = 0$ 

$$\Rightarrow$$
  $(x_1 - x_2) + (x_1 + x_2 + 1) = 0$ 

$$\Rightarrow \qquad x_1 - x_2 = 0 \qquad [\because x_1 + x_2 + 1 \neq 0]$$

$$\Rightarrow$$
  $x_1 = x_2$ 

Thus, f is one-one.

Let  $y \in N$ , then for any x,

$$f(x) = y \text{ if } y = x^2 + x + 1$$

$$\Rightarrow \qquad y = \left(x^2 + x + \frac{1}{4}\right) + \frac{3}{4}$$

$$\Rightarrow \qquad y = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4}$$

$$\Rightarrow \qquad x + \frac{1}{2} = \pm \sqrt{y - \frac{3}{4}}$$

$$\Rightarrow \qquad x = \pm \frac{\sqrt{4y - 3}}{2} - \frac{1}{2}$$

$$\Rightarrow \qquad x = \frac{\pm\sqrt{4y-3} - 1}{2}$$

$$\Rightarrow \qquad x = \frac{\sqrt{4y - 3} - 1}{2}$$

$$\left[\frac{-\sqrt{4y-3}-1}{2} \notin N \text{ for any value of } y\right]$$

Now, for y = 
$$\frac{3}{4}$$
, x =  $-\frac{1}{2} \notin \mathbb{N}$ 

Thus, f is not onto.

 $\Rightarrow$  f(x) is not invertible.

Since, x > 0, therefore, 
$$\frac{\sqrt{4y-3}-1}{2}$$
 > 0

$$\Rightarrow \sqrt{4y-3} > 1$$

$$\Rightarrow$$
 4y  $-3 > 1$ 

$$\Rightarrow 4y > 4$$

Redefining,  $f:(0, \infty) \to (1, \infty)$  makes

$$f(x) = x^2 + x + 1$$
 on onto function.

Thus, f (x) is bijection, hence f is invertible and  $f^{-1}:(1,\infty)\to(1,0)$ 

$$f^{-1}(y) = \frac{\sqrt{4y-3}-1}{2}$$

## 2. Solution:

We have:

 $R = \{(a, b): a, b \in A; |a - b| \text{ is divisible by } 4\}.$ 

(1) Reflexive: For any  $a \in A$ ,

$$∴$$
 (a, b)  $∈$  R.

|a - a| = 0, which is divisible by 4.

Thus, R is reflexive.

Symmetric:

Let 
$$(a, b) \in R$$

$$\Rightarrow$$
 |a – b| is divisible by 4

$$\Rightarrow$$
 |b – a| is divisible by 4

Thus, R is symmetric.

Transitive: Let  $(a, b) \in R$  and  $(b, c) \in R$ 

 $\Rightarrow$  |a - b| is divisible by 4 and |b - c| is divisible by 4

$$\Rightarrow$$
 |a - b| = 4 $\lambda$ 

$$\Rightarrow$$
 a - b =  $\pm 4\lambda$  .....(1)

and 
$$|b - c| = 4\mu$$

$$\Rightarrow$$
 b - c =  $\pm 4\mu$  .....(2)

Adding (1) and (2),

$$(a-b) + (b-c) = \pm 4(\lambda + \mu)$$

$$\Rightarrow$$
 a - c =  $\pm$  4 ( $\lambda$  +  $\mu$ )

$$\Rightarrow$$
 (a, c)  $\in$  R.

Thus, R is transitive.

Now, R is reflexive, symmetric and transitive.

Hence, R is an equivalence relation.

(ii) Let 'x' be an element of A such that  $(x, 1) \in R$ 

 $\Rightarrow$  |x - 1| is divisible by 4

$$\Rightarrow$$
 x - 1 = 0,4, 8, 12,...

$$\Rightarrow$$
 x = 1, 5, 9, 13, ...

Hence, the set of all elements of A which are related to 1 is {1, 5, 9}.

(iii) Let 
$$(x, 2) \in R$$
.

Thus |x - 2| = 4k, where  $k \le 3$ .

$$x = 2, 6, 10.$$

Hence, equivalence class  $[2] = \{2, 6, 10\}.$ 

## 3. Solution:

Let  $y \in R$ .

For any x, 
$$f(x) = y$$
 if  $y = 9x^2 + 6x - 5$ 

$$\Rightarrow$$
 y =  $(9x^2 + 6x + 1) - 6$ 

$$=(3x+1)^2-6$$

$$\Rightarrow 3x + 1 = \pm \sqrt{y + 6}$$

$$\Rightarrow \qquad x = \frac{\pm \sqrt{y+6} - 1}{3}$$

$$\Rightarrow \qquad x = \frac{\sqrt{y+6}-1}{3}$$

$$\left[\because \frac{-\sqrt{y+6}-1}{3} \notin [0,\infty) \text{ for any value of } y\right]$$

For 
$$y = -6 \in R$$
,  $x = -\frac{1}{3} \notin [0, \infty)$ .

Thus, f(x) is not onto.

Hence, f(x) is not invertible.

Since, 
$$x \ge 0$$
,  $\therefore \frac{\sqrt{y+6}-1}{3} \ge 0$ 

$$\Rightarrow \qquad \sqrt{y+6}-1 \ge 0$$

$$\Rightarrow \qquad \sqrt{y+6} \ge 1$$

$$\Rightarrow \qquad \qquad y+6 \ge 1$$

$$\Rightarrow \qquad \qquad y \ge -5.$$

We redefine,

$$f: [0, \infty) \rightarrow [-5, \infty),$$

which makes  $f(x) = 9x^2 + 6x - 5$  an onto function.

Now, 
$$x_1, x_2 \in [0, \infty)$$
 such that  $f(x_1) = f(x_2)$ 

$$\Rightarrow$$
  $(3x_1 + 1)^2 = (3x_2 + 1)^2$ 

$$\Rightarrow$$
[(3x<sub>1</sub> + 1)+ (3x<sub>2</sub> + 1)][(3x<sub>1</sub> + 1)- (3x<sub>2</sub> + 1)]

$$\Rightarrow$$
 [3(x<sub>1</sub> + x<sub>2</sub>) + 2][3(x<sub>1</sub> - x<sub>2</sub>)] = 0

$$\Rightarrow x_1 = x_2$$

$$[:: 3(x_1 + x_2) + 2 > 0]$$

Thus, f(x) is one-one.

f(x) is bijective, hence f is invertible

and 
$$f^{-1}$$
:  $[-5, \infty) \rightarrow [0, \infty)$ 

$$f^{-1}(y) = \frac{\sqrt{y+6-1}}{3}$$

# Assertion and Reason Answers-

- 1. (a) Both A and R are true and R is the correct explanation of A.
- **2.** (a) Both A and R are true and R is the correct explanation of A.

# **Case Study Answers-**

#### 1. Answer:

#### **Solution:**

For f(x) to be defined x - 2;  $\neq 0$  i.e., x;  $\neq 2$ .

 $\therefore$  Domain of  $f = R - \{2\}$ 

(ii) (b) 
$$R - \{2\}$$

#### **Solution:**

Let 
$$y = f(x)$$
, then  $y = \frac{x-1}{x-2}$ 

$$\Rightarrow$$
 xy - 2y = x - 1  $\Rightarrow$  xy - x = 2y -

$$\Rightarrow x = \frac{2y-1}{y-1}$$

Since,  $x \in R - \{2\}$ , therefore  $y \neq 1$ 

Hence, range of  $f = R - \{1\}$ 

(iii) (d) 
$$\frac{x}{x-2}$$

#### **Solution:**

We have, g(x) = 2f(x) - 1

$$=2\left(\frac{x-1}{x-2}\right)-1=\frac{2x-2-x+2}{x-2}=\frac{x}{x-2}$$

(iv) (a) One-one

# **Solution:**

We have, 
$$g(x) = \frac{x}{x-2}$$

Let 
$$g(x_1) = g(x_2) \Rightarrow \frac{x_1}{x_1 - 2} = \frac{x_2}{x_2 - 2}$$

$$\Rightarrow x_1x_2 - 2x_1 = x_1x_2 - 2x_2 \Rightarrow 2x_1 = 2x_2 \Rightarrow x_1 = x_2$$

Thus, 
$$g(x_1) = g(x_2) \Rightarrow x_1 = x_2$$

Hence, g(x) is one-one.

$$(v)(c) f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

#### 2. Answer:

(i) (a) Reflexive

## **Solution:**

Clearly, (1, 1), (2, 2), (3, 3),  $\in R$ . So, R is reflexive on A.

Since,  $(1, 2) \in R$  but  $(2, 1) \notin R$ . So, R is not symmetric on A.

Since, (2, 3),  $\in R$  and  $(3, 1) \in R$  but  $(2, 1) \notin R$ . So, R is not transitive on A.

## (ii) (b) Symmetric

#### **Solution:**

Since, (1, 1), (2, 2) and (3, 3) are not in R. So, R is not reflexive on A.

Now,  $(1, 2) \in \mathbb{R} \Rightarrow (2, 1) \in \mathbb{R}$  and  $(1, 3) \in \mathbb{R} \Rightarrow (3, 1) \in \mathbb{R}$ . So,  $\mathbb{R}$  is symmetric,

Clearly,  $(1, 2) \in R$  and  $(2, 1) \in R$  but  $(1, 1) \notin R$ . So, R is not transitive on A.

(iii) (c) Transitive

#### **Solution:**

We have,  $R = \{(x, y): y = x + 5 \text{ and } x < 4\}$ , where  $x, y \in N$ .

$$\therefore$$
 R = {(1, 6), (2, 7), (3, 8)}

Clearly, (1, 1), (2, 2) etc. are not in R. So, R is not reflexive.

Since,  $(1, 6) \in R$  but  $(6, 1) \notin R$ . So, R is not symmetric.

Since,  $(1, 6) \in R$  and there is no order pair in R which has 6 as the first element.

Same is the case for (2, 7) and (3, 8). So, R is transitive.

# (iv) (d) Equivalence

#### **Solution:**

We have,  $R = \{(x, y): 3x - y = 0\}$ , where  $x, y \in A = \{1, 2, \dots, 14\}$ .

$$\therefore R = \{(1, 3), (2, 6), (3, 9), (4, 12)\}$$

Clearly,  $(1, 1) \notin R$ . So, R is not reflexive on A.

Since,  $(1,3) \in R$  but  $(3,1) \notin R$ . So, R is not symmetric on A.

Since,  $(1,3) \in \text{Rand } (3,9) \in \text{R but } (1,9) \notin \text{R. So, R is not transitive on A.}$ 

(v)(d) Equi0076alence

## **Solution:**

Clearly, (1, 1), (2, 2),  $(3, 3) \in R$ . So, R is reflexive on A.

We find that the ordered pairs obtained by interchanging the components of ordered pairs in R are also in R. So, R is symmetric on A. For 1, 2,  $3 \in A$  such that (1, 2) and (2, 3) are in R implies that (1, 3) is also, in R. So, R is transitive on A. Thus, R is an equivalence relation.