MATHEMATICS

Chapter 1: Relation and Function

RELATIONS AND FUNCTIONS

Top Concepts in Relations

1. Introduction to Relation and no. of relations

- A relation R between two non-empty sets A and B is a subset of their Cartesian product $A \times B$.
- If $A=B$, then the relation R on A is a subset of $A \times A$.
- The total number of relations from a set consisting of m elements to a set consisting of n elements is $2^{m n}$.
- If (a, b) belongs to R, then a is related to b and is written as 'a $R b$ ', If (a, b) does not belong to R, then a is not related to b and it is written as 'a R ' b '.

2. Co-domain and Range of a Relation

Let R be a relation from A to B. Then the 'domain of $R^{\prime} \subset A$ and the 'range of $R^{\prime} \subset B$. Codomain is either set B or any of its superset or subset containing range of R.

3. Types of Relations

A relation R in a set A is called an empty relation if no element of A is related to any element of A, i.e.,

$$
R=\phi \in A \times A .
$$

A relation R in a set A is called a universal relation if each element of A is related to every element of A, i.e., $R=A \times A$.

4. A relation R on a set A is called:

a. Reflexive, if $(a, a) \in R$ for every $a \in A$.
b. Symmetric, if $\left(a_{1}, a_{2}\right) \in R$ implies that $\left(a_{2}, a_{1}\right) \in R$ for all $a_{1}, a_{2} \in A$.
c. Transitive, if $\left(a_{1}, a_{2}\right) \in R$ and $\left(a_{2}, a_{3}\right) \in R$ implies that $(a 1, a 3) \in R$ for all $a_{1}, a_{2}, a_{3} \in A$.

5. Equivalence Relation

- A relation R in a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive.

RELATIONS AND FUNCTIONS

- An empty relation R on a non-empty set X (i.e., 'a R ' is never true) is not an equivalence relation, because although it is vacuously symmetric and transitive, but it is not reflexive (except when X is also empty).

6. Given an arbitrary equivalence relation R in a set X, R divides X into mutually disjoint subsets S_{i} called partitions or subdivisions of X provided:
a. All elements of S , are related to each other for all i .
b. No element of Si is related to any element of St if $\mathrm{i} \neq \mathrm{j}$.
c.

$$
\bigcup_{i=1}^{n} S_{\mathrm{j}}=\mathrm{X} \text { and } S_{\mathrm{i}} \cap \mathrm{~S}_{\mathrm{j}}=\phi \text { if } \mathrm{i} \neq \mathrm{j} .
$$

The subsets St are called equivalence classes.
7. Union, Intersection and Inverse of Equivalence Relations
a. If R and S are two equivalence relations on a set $A, R \cap S$ is also an equivalence relation on A.
b. The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.
c. The inverse of an equivalence relation is an equivalence relation.

Top Concepts in Functions

1. Introduction to functions

A function from a non-empty set A to another non-empty set B is a correspondence or a rule which associates every element of A to a unique element of B written as $f: A \rightarrow B$ such that $f(x)=y$ for all $x \in A, y \in B$.

All functions are relations, but the converse is not true.

2. Domain, Co-domain and Range of a Function

- If $f: A \rightarrow B$ is a function, then set A is the domain, set B is the co-domain and set $\{f(x): x$ $\in A$) is the range of f.
- The range is a subset of the co-domain.
- A function can also be regarded as a machine which gives a unique output in set B corresponding to each input from set A.

R1 RELATIONS AND FUNCTIONS

- If A and B are two sets having m and n elements, respectively, then the total number of functions from A to B is n^{m}.

3. Real Function

- A function $f: A \rightarrow B$ is called a real-valued function if B is a subset of R.
- If A and B both are subsets of R, then ' f ' is called a real function.
- While describing real functions using mathematical formula, x (the input) is the independent variable and y (the output) is the dependent variable.
- The graph of a real function ' f ' consists of points whose co-ordinates (x, y) satisfy $y=$ $f(x)$, for all $x \in \operatorname{Domain}(f)$.

4. Vertical line test

A curve in a plane represents the graph of a real function if and only if no vertical line intersects it more than once.

5. One-one Function

- A function $f: A \rightarrow B$ is one-to-one if for all $x, y \in A, f(x)=f(y) \Rightarrow x=y$ or $x \neq y \Rightarrow f(x) \neq$ $f(y)$.
- A one-one function is known as an injection or injective function. Otherwise, f is called many-one.

6. Onto Function

- A function $f: A \rightarrow B$ is an onto function, if for each $b \in B$, there is at least one $a \in A$ such that $f(a)=b$, i.e., if every element in B is the image of some element in A, then f is an onto or surjective function.
- For an onto function, range = co-domain.
- A function which is both one-one and onto is called a bijective function or a bijection.
- A one-one function defined from a finite set to itself is always onto, but if the set is infinite, then it is not the case.

7. Let A and B be two finite sets and $f: A \rightarrow B$ be a function.

- If f is an injection, then $n(A) \leq n(B)$.
- If f is a surjection, then $n(A) \geq n(B)$.
- If f is a bijection, then $n(A)=n(B)$.

8. If A and B are two non-empty finite sets containing m and n elements, respectively, then

Number of functions from A to $B=n^{m}$.

- Number of one-one function from A to $B=\left\{\begin{array}{r}C_{m} \times m \text { !, if } n \geq m \\ 0, \text { if } n<m\end{array}\right.$
- Number of onto functions from A to B

$$
=\left\{\begin{array}{r}
\sum_{r=1}^{n}(-1)^{n-r}{ }^{n} C_{r} r^{m}, \text { if } m \geq n \\
0, \text { if } m<n
\end{array}\right.
$$

- Number of one-one and onto functions from A to $B=\left\{\begin{array}{r}n!, \text { if } m=n \\ 0, \text { if } m \neq n\end{array}\right.$

9. If a function $f: A \rightarrow B$ is not an onto function, then $f: A \rightarrow f(A)$ is always an onto function.

10.Composition of Functions

Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two functions. The composition of f and g , denoted by g of, is defined as the function g of: $A \rightarrow C$ and is given by g of $(x): A \rightarrow C$ defined by g of $f(x)=$ $\mathrm{g}(\mathrm{f}(\mathrm{x})) \forall x \in \mathrm{~A}$.

- Composition of f and g is written as g of fand not $f \circ \mathrm{~g}$.
- g of is defined if the range of $\mathrm{f} \subseteq$ domain of g , and $\mathrm{f} \circ \mathrm{g}$ is defined if the range of $\mathrm{g} \subseteq$ domain of f.
- Composition of functions is not commutative in general i.e., f o $g(x) \neq \mathrm{g} \circ \mathrm{f}(\mathrm{x})$.
- Composition is associative i.e., if $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ and $\mathrm{h}: \mathrm{Z} \rightarrow \mathrm{S}$ are functions, then ho $(\mathrm{g} \circ \mathrm{f})=(\mathrm{h} \circ \mathrm{g}) \circ \mathrm{f}$.
- The composition of two bijections is a bijection.

11.Inverse of a Function

- Let $f: A \rightarrow B$ is a bijection, then $g: B \rightarrow A$ is inverse of f if $f(x)=y \Leftrightarrow g(y)=x$ ORgof $=I_{A}$ and $f \circ g=I_{B}$
- If g of $=I_{A}$ and f is an injection, then g is a surjection.
- If $f o g^{\prime} l_{B}$ and f is a surjection, then g is an injection.

12. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions. Then

- gof: $A \rightarrow C$ is onto $\Rightarrow g: B \rightarrow C$ is onto.
- gof: $A \rightarrow C$ is one-one $\Rightarrow f: A \rightarrow B$ is one-one.

01 RELATIONS AND FUNCTIONS

- g of: $A \rightarrow C$ is onto and $\mathrm{g}: B \rightarrow C$ is one-one $\Rightarrow \mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is onto.
- gof: $A \rightarrow C$ is one-one and $f: A \rightarrow B$ is onto $\quad \Rightarrow g: B \rightarrow C$ is one-one.

13. Invertible Function

- A function $f: X \rightarrow Y$ is defined to be invertible if there exists a function $g: Y \rightarrow X$ such that gof $-I_{x}$ and $f o g=I_{y}$.
- The function g is called the inverse of f and is denoted by f^{-1}. If f is invertible, then f must be one-one and onto, and conversely, if f is one-one and onto, then f must be invertible.
- If $f: A \rightarrow B$ and $g: B \rightarrow C$ are one-one and onto, then g of $: A \rightarrow C$ is also one-one and onto. But if g of is one-one, then only f is one-one and g may or may not be one-one. If g of f is onto, then g is onto and f may or may not be onto.
- Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be two invertible functions. Then g of f is also invertible with (g of $)^{-1}=f^{-1} o^{-1}$.
- If $f: R \rightarrow R$ is invertible, $f(x)=y$, then $f^{-1}(y)=x$ and $\left(f^{-1}\right)^{-1}$ is the function f itself.

Binary Operations

1. A binary operation * on a set A is a function from $A \times A$ to A.
2. If * is a binary operation on a set S , then S is closed with respect to *.

3. Binary operations on \mathbf{R}

- Addition, subtraction and multiplication are binary operations on R, which is the set of real numbers.
- Division is not binary on R; however, division is a binary operation on $R-\{0\}$ which is the set of non-zero real numbers.

4. Laws of Binary Operations

- A binary operation * on the set X is called commutative, if a * $b=b$ * a, for every $a, b \in$ X.
- A binary operation * on the set X is called associative, if $a\left(b^{*} c\right)=\left(a^{*} b\right)^{*} c$, for every a, b, $c \in X$.
- An element $\mathrm{e} \in \mathrm{A}$ is called an identity of A with respect to * if for each $\mathrm{a} \in \mathrm{A}, \mathrm{a}$ * $\mathrm{e}=\mathrm{a}=\mathrm{e}$ * a.
- The identity element of (A, *) if it exists, is unique.

5. Existence of Inverse

Given a binary operation * from $\mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$ with the identity element e in A , an element a e A is said to be invertible with respect to the operation *, if there exists an element b in

A such that $a^{*} b=e=b * a$ and b is called the inverse of a and is denoted by a^{-1}.
6. If the operation table is symmetric about the diagonal line, then the operation is commutative.

The operation * is commutative.

7. Binary Operation on Natural Numbers

Addition ' + ' and multiplication '-' on N , the set of natural numbers, are binary operations. However, subtraction ' - ' and division are not, because $(4,5)=4-5=-1 \in N$ and $4 / 5=.8$ $\in N$.

8. Number of Binary Operations

- Let S be a finite set consisting of n elements. Then $S \times S$ has n^{2} elements.
- The total number of functions from a finite set A to a finite set B is $\left[n^{(B)}\right]^{n(A)}$. Therefore, total number of binary operations on S is $n^{n^{2}}$.
- The total number of commutative binary operations on a set consisting of n elements is $\mathrm{n} \frac{n(n-1)}{2}$.

Class: 12th Maths
Chapter-1 : Relations and Functions

Important Questions

Multiple Choice questions-

1. Let R be the relation in the set $(1,2,3,4\}$, given by:
$R=\{(1,2),(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$.
Then:
(a) R is reflexive and symmetric but not transitive
(b) R is reflexive and transitive but not symmetric
(c) R is symmetric and transitive but not reflexive
(d) R is an equivalence relation.
2. Let R be the relation in the set N given by: $R=\{(a, b): a=b-2, b>6\}$. Then:
(a) $(2,4) \in R$
(b) $(3,8) \in R$
(c) $(6,8) \in R$
(d) $(8,7) \in R$.
3. Let $A=\{1,2,3\}$. Then number of relations containing $\{1,2\}$ and $\{1,3\}$, which are reflexive and symmetric but not transitive is:
(a) 1
(b) 2
(c) 3
(d) 4 .
4. Let $A=(1,2,3)$. Then the number of equivalence relations containing $(1,2)$ is
(a) 1
(b) 2
(c) 3
(d) 4 .
5. Let $f: R \rightarrow R$ be defined as $f(x)=x^{4}$. Then
(a) f is one-one onto
(b) f is many-one onto
(c) f is one-one but not onto
(d) f is neither one-one nor onto.
6. Let $f: R \rightarrow R$ be defined as $f(x)=3 x$. Then
(a) f is one-one onto
(b) fis many-one onto
(c) f is one-one but not onto
(d) fis neither one-one nor onto.
7. If $f: R \rightarrow R$ be given by $f(x)=\left(3-x^{3}\right)^{1 / 3}$, then $f_{o} f(x)$ is
(a) $x^{1 / 3}$
(b) x^{3}
(c) x
(d) $3-x^{3}$.
8. Let $f: R-\left\{-\frac{4}{3}\right\} \rightarrow R$ be a function defined as: $f(x)=\frac{4 x}{3 x+4}, x \neq-\frac{4}{3}$. The inverse of f is map g : Range $f \rightarrow R-\left\{-\frac{4}{3}\right\}$ given by
(a) $g(y)=\frac{3 y}{3-4 y}$
(b) $g(y)=\frac{4 y}{4-3 y}$
(c) $g(y)=\frac{4 y}{3-4 y}$
(d) $g(y)=\frac{3 y}{4-3 y}$
9. Let R be a relation on the set N of natural numbers defined by $n R m$ if n divides m. Then R is
(a) Reflexive and symmetric
(b) Transitive and symmetric
(c) Equivalence
(d) Reflexive, transitive but not symmetric.
10. Set A has 3 elements, and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is:
(a) 144
(b) 12
(c) 24
(d) 64

Very Short Questions:

1. If $R=\{(x, y): x+2 y=8\}$ is a relation in N, write the range of R.
2. Show that a one-one function:
$f\{1,2,3\} \rightarrow\{1,2,3\}$ must be onto. (N.C.E.R.T.)
3. What is the range of the function $f(x)=\frac{|x-1|}{x-1}$? (C.B.S.E. 2010)
4. Show that the function $f: N \rightarrow N$ given by $f(x)=2 x$ is one-one but not onto. (N.C.E.R.T.)
5. If $f: R \rightarrow R$ is defined by $f(x)=3 x+2$ find $f(f(x))$. C.B.S.E. 2011 ($F)$)
6. If $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{\mathrm{x}-1}, \mathrm{x} \neq 1$ then find fof. (N.C.E.R.T)
7. If $f: R \rightarrow R$ is defined by $f(x)=\left(3-x^{3}\right)^{1 / 3}$, find fof (x)
8. Are f and q both necessarily onto, if gof is onto? (N.C.E.R.T.)

Short Questions:

1. Let A be the set of all students of a Boys' school. Show that the relation R in A given by:
$R=\{(a, b)$: a is sister of $b\}$ is an empty relation and the relation R^{\prime} given by :
$R^{\prime}=\{(a, b)$: the difference between heights of a and b is less than 3 metres $\}$ is an universal relation. (N.C.E.R.T.)
2. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. Define a relation R in X given by :
$R=\{(a, b): f(a)=f(b)\}$.
Examine, if R is an equivalence relation. (N.C.E.R.T.)
3. Let R be the relation in the set Z of integers given by:
$R=\{(a, b): 2$ divides $a-b\}$.
Show that the relation R is transitive. Write the equivalence class [0]. (C.B.S.E. Sample Paper 2019-20)
4. Show that the function:
$\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$
given by $f(1)=f(2)=1$ and $f(x)=x-1$, for every $x>2$ is onto but not one-one. (N.C.E.R.T.)
5. Find gof and fog, if:
$f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=\cos x$ and $g(x)=3 x^{2}$. Show that gof \neq fog. (N. C.E.R. T.)
6. If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$ find $f o f(x)$
7. Let $\mathrm{A}=\mathrm{Nx} \mathrm{N}$ be the set of ail ordered pairs of natural numbers and R be the relation on the set A defined by (a, b) $R(c, d)$ iff $a d=b c$. Show that R is an equivalence relation.
8. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be the Signum function defined as:

$$
f(x)=\left\{\begin{aligned}
1, & x>0 \\
0, & x=0 \\
-1, & x<0
\end{aligned}\right.
$$

and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be the Greatest Integer Function given by $\mathrm{g}(\mathrm{x})=[\mathrm{x}]$, where $[\mathrm{x}]$ is greatest integer less than or equal to x. Then does fog and gof coincide in $(0,1]$?

Long Questions:

1. Show that the relation R on R defined as $R=\{(a, b): a \leq b\}$, is reflexive and transitive but not symmetric.

RELATIONS AND FUNCTIONS

2. Prove that function $f: N \rightarrow N$, defined by $f(x)=x^{2}+x+1$ is one-one but not onto. Find inverse of $f: N \rightarrow S$, where S is range of f.
3. Let $\mathrm{A}=(\mathrm{x} \in \mathrm{Z}: 0 \leq \mathrm{x} \leq 12\}$.

Show that $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathrm{A} ;|\mathrm{a}-\mathrm{b}|$ is divisible by 4$\}$ is an equivalence relation. Find the set of all elements related to 1 . Also write the equivalence class [2]. (C.B.S.E 2018)
4. Prove that the function $f:[0, \infty) \rightarrow R$ given by $f(x)=9 x^{2}+6 x-5$ is not invertible. Modify the co-domain of the function f to make it invertible, and hence find $\mathrm{f}-1$. (C.B.S.E. Sample Paper 2018-19

Assertion and Reason Questions-

1. Two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes(a), (b), (c) and (d) as given below.
a) Both A and R are true and R is the correct explanation of A.
b) Both A and R are true but R is not the correct explanation of A.
c) A is true but R is false.
d) A is false and R is also false.

Assertion(A): Let L be the set of all lines in a plane and R be the relation in L defined as $R=\{(L 1, L 2): L 1$ is perpendicular to $L 2\} . R$ is not equivalence realtion.

Reason (R): R is symmetric but neither reflexive nor transitive
2. Two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes(a), (b), (c) and (d) as given below.
a) Both A and R are true and R is the correct explanation of A.
b) Both A and R are true but R is not the correct explanation of A.
c) A is true but R is false.
d) A is false and R is also false.

Assertion (A): = \{(T1, T2): T1 is congruent to T 2$\}$. Then R is an equivalence relation.
Reason(R): Any relation R is an equivalence relation, if it is reflexive, symmetric and transitive.

Case Study Questions-

1. Consider the mapping $f: A \rightarrow B$ is defined by $f(x)=x-1$ such that f is a bijection.

Based on the above information, answer the following questions.
(i) Domain of f is:
a) $R-\{2\}$
b) R
c) $\mathrm{R}-\{1,2\}$
d) $\mathrm{R}-\{0\}$
(ii) Range of f is:
a) R
b) $\mathrm{R}-\{2\}$
c) $R-\{0\}$
d) $\mathrm{R}-\{1,2\}$
(iii) If $g: R-\{2\} \rightarrow R-\{1\}$ is defined by $g(x)=2 f(x)-1$, then $g(x)$ in terms of x is:
a. $\frac{x+2}{x}$
b. $\frac{x+1}{x-2}$
c. $\frac{x-2}{x}$
d. $\frac{x}{x-2}$
(iv) The function g defined above, is:
a) One-one
b) Many-one
c) into
d) None of these
(v)A function $f(x)$ is said to be one-one if.
a. $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \Rightarrow-\mathrm{x}_{1}=\mathrm{x}_{2}$
b. $\mathrm{f}\left(-\mathrm{x}_{1}\right)=\mathrm{f}\left(-\mathrm{x}_{2}\right) \Rightarrow-\mathrm{x}_{1}=\mathrm{x}_{2}$
c. $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$
d. None of these
2. A relation R on a set A is said to be an equivalence relation on A iff it is:
I. Reflexive i.e., $(a, a) \in R \forall a \in A$.
II. Symmetric i.e., $(\mathrm{a}, \mathrm{b}) \in \mathrm{R} \Rightarrow(\mathrm{b}, \mathrm{a}) \in \mathrm{R} \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$.
III. Transitive i.e., $(a, b) \in R$ and $(b, c) \in R \Rightarrow(a, c) \in R \forall a, b, c \in A$.

Based on the above information, answer the following questions.
(i) If the relation $R=\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,1),(3,2),(3,3)\}$ defined on the set $A=\{1,2,3\}$, then R is:
a) Reflexive
b) Symmetric
c) Transitive
d) Equivalence
(ii) If the relation $R=\{(1,2),(2,1),(1,3),(3,1)\}$ defined on the set $A=\{1,2,3\}$, then R is:
a) Reflexive
b) Symmetric
c) Transitive
d) Equivalence
(iii) If the relation R on the set N of all natural numbers defined as $R=\{(x, y): y=x+$ 5 and $x<4\}$, then R is:
a) Reflexive
b) Symmetric
c) Transitive
d) Equivalence
(iv) If the relation R on the set $\mathrm{A}=\{1,2,3, \ldots, 13,14\}$ defined as $\mathrm{R}=\{(\mathrm{x}, \mathrm{y}): 3 \mathrm{x}-\mathrm{y}=$ $0\}$, then R is:
a) Reflexive
b) Symmetric
c) Transitive
d) Equivalence
(v)If the relation R on the set $A=\{I, 2,3\}$ defined as $R=\{(1,1),(1,2),(1,3),(2,1)$, $(2,2),(2,3),(3,1),(3,2),(3,3)\}$, then R is:
a) Reflexive only
b) Symmetric only
c) Transitive only
d) Equivalence

Answer Key-

Multiple Choice questions-

(b) R is reflexive and transitive but not symmetric
(c) $(6,8) \in R$
(a) 1
(b) 2
(d) f is neither one-one nor onto.
(a) f is one-one onto
(c) x
(b) $g(y)=\frac{4 y}{4-3 y}$
(b) Transitive and symmetric
(c) 24

Very Short Answer:

1. Solution: Range of $R=\{1,2,3\}$.
$[\because$ When $\mathrm{x}=2$, then $\mathrm{y}=3$, when $\mathrm{x}=4$, then $\mathrm{y}=2$, when $\mathrm{x}=6$, then $\mathrm{y}=1$]
2. Solution: Since ' f ' is one-one,
\therefore under ' f ', all the three elements of $\{1,2,3\}$ should correspond to three different elements of the co-domain $\{1,2,3\}$.

Hence, ' f ' is onto.
3. Solution: When $x>1$, than $f(x)=\frac{x-1}{x-1}=1$.

When $\mathrm{x}<1$,

RELATIONS AND FUNCTIONS

than $f(x)=\frac{-(x-1)}{x-1}=-1$
Hence, $R f=\{-1,1\}$.
4. Solution:

Let $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{~N}$.
Now, $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\Rightarrow 2 \mathrm{x}_{1}=2 \mathrm{x}_{2}$
$\Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$
$\Rightarrow \mathrm{f}$ is one-one.
Now, f is not onto.
\because For $1 \in \mathrm{~N}$, there does not exist any $\mathrm{x} \in \mathrm{N}$ such that $\mathrm{f}(\mathrm{x})=2 \mathrm{x}=1$.
Hence, f is ono-one but not onto.
5. Solution:

$$
\begin{aligned}
& f(f(x))=3 f(x)+2 \\
& =3(3 x+2)+2=9 x+8
\end{aligned}
$$

6. Solution:

$$
\begin{aligned}
& f o f(x)=f(f(x))=\frac{f(x)}{f(x)-1} \\
&=\frac{x}{\frac{x-1}{x-1}-1}=\frac{x}{x-x+1} \\
&=\frac{x}{1}=x
\end{aligned}
$$

7. Solution:
$\mathrm{f}_{0} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{f}(\mathrm{x}))=\left(3-(\mathrm{f}(\mathrm{x}))^{3}\right)^{1 / 3}$
$=\left(3-\left(\left(3-x^{3}\right)^{1 / 3}\right)^{3}\right)^{1 / 3}$
$=\left(3-\left(3-x^{3}\right)\right)^{1 / 3}=\left(x^{3}\right)^{1 / 3}=x$.
8. Solution:

Consider f: $\{1,2,3,4\} \rightarrow\{1,2,3,4\}$
and g: $\{1,2,3,4\} \rightarrow\{1,2.3\}$ defined by:
$\mathrm{f}(1)=1, \mathrm{f}(2)=2, \mathrm{f}(3)=\mathrm{f}(4)=3$
$g(1)=1, g(2)=2, g(3)=g(4)=3$.
$\therefore \mathrm{gof}=\mathrm{g}(\mathrm{f}(\mathrm{x}))\{1,2,3\}$, which is onto
But f is not onto.
[$\because 4$ is not the image of any element]

Short Answer:

1. Solution:
(i) Here $\mathrm{R}=\{(\mathrm{a}, \mathrm{b})$: a is sister of b$\}$.

Since the school is a Boys' school,
\therefore no student of the school can be the sister of any student of the school.
Thus $\mathrm{R}=\Phi$ Hence, R is an empty relation.
(ii) Here $R^{\prime}=\{(a, b)$: the difference between heights of a and b is less than 3 metres $\}$.

Since the difference between heights of any two students of the school is to be less than 3 metres,
$\therefore \mathrm{R}^{\prime}=\mathrm{A} \times \mathrm{A}$. Hence, R^{\prime} is a universal relation.
2. Solution:

For each $a \in X,(a, a) \in R$.
Thus R is reflexive. [$\because f(a)=f(a)]$
Now (a, b) $\in \mathrm{R}$
$\Rightarrow \mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b})$
$\Rightarrow \mathrm{f}(\mathrm{b})=\mathrm{f}(\mathrm{a})$
$\Rightarrow(\mathrm{b}, \mathrm{a}) \in \mathrm{R}$.

Thus R is symmetric.
And (a, b) $\in \mathrm{R}$
and $(b, c) \in R$
$\Rightarrow \mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b})$
and $f(b)=f(c)$
$\Rightarrow \mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{c})$
$\Rightarrow(\mathrm{a}, \mathrm{c}) \in \mathrm{R}$.
Thus R is transitive.
Hence, R is an equivalence relation.
3. Solution:

Let 2 divide $(\mathrm{a}-\mathrm{b})$ and 2 divide $(\mathrm{b}-\mathrm{c}$), where $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}$
$\Rightarrow 2$ divides [(a-b) $+(\mathrm{b}-\mathrm{c})]$
$\Rightarrow 2$ divides $(\mathrm{a}-\mathrm{c})$.
Hence, R is transitive.
And $[0]=\{0, \pm 2, \pm 4, \pm 6, \ldots]$.
4. Solution:

Since $f(1)=f(2)=1$,
$\therefore \mathrm{f}(1)=\mathrm{f}(2)$, where $1 \neq 2$.
\therefore ' f ' is not one-one.
Let $\mathrm{y} \in \mathrm{N}, \mathrm{y} \neq 1$,
we can choose x as $\mathrm{y}+1$ such that $\mathrm{f}(\mathrm{x})=\mathrm{x}-1$
$=y+1-1=y$.
Also $1 \in \mathrm{~N}, \mathrm{f}(1)=1$.
Thus ' f ' is onto.
Hence, ' f ' is onto but not one-one.
5. Solution:

We have:
$f(x)=\cos x$ and $g(x)=3 x^{2}$.
$\therefore \mathrm{gof}(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{g}(\cos \mathrm{x})$
$=3(\cos x)^{2}=3 \cos ^{2} x$
and $f o g(x)=f(g(x))=f\left(3 x^{2}\right)=\cos 3 x^{2}$.
Hence, gof $=$ fog.
6. Solution:

We have: $\frac{4 x+3}{6 x-4}$.
$\therefore \mathrm{fof}(\mathrm{x})-\mathrm{f}(\mathrm{f}(\mathrm{x}))$
$=\frac{4 f(x)+3}{6 f(x)-4}$
$=\frac{4\left(\frac{4 x+3}{6 x-4}\right)+3}{6\left(\frac{4 x+3}{6 x-4}\right)-4} \quad[U \operatorname{sing}(1)]$
$=\frac{16 x+12+18 x-12}{24 x+18-24 x+16}$
$=\frac{34 x}{34}=x$.
7. Solution:

Given: (a, b) $R(c, d)$ if and only if $a d=b c$.
(I) (a, b) $\mathrm{R}(\mathrm{a}, \mathrm{b})$ iff ab - ba, which is true.
$[\because a b=b a \forall a, b \in N]$
Thus, R is reflexive.
(II) (a, b) $\mathrm{R}(\mathrm{c}, \mathrm{d}) \Rightarrow \mathrm{ad}=\mathrm{bc}$
$(\mathrm{c}, \mathrm{d}) \mathrm{R}(\mathrm{a}, \mathrm{b}) \Rightarrow \mathrm{cb}=\mathrm{da}$.
But $c b=$ be and da $=a d$ in N .
$\therefore(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d}) \Rightarrow(\mathrm{c}, \mathrm{d}) \mathrm{R}(\mathrm{a}, \mathrm{b})$.
Thus, R is symmetric.
(III) $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d})$
$\Rightarrow \mathrm{ad}=\mathrm{bc}$
(c, d) $\mathrm{R}(\mathrm{e}, \mathrm{f})$
$\Rightarrow \mathrm{cf}=\mathrm{de}$
Multiplying (1) and (2), (ad). (cf) - (be), (de)
\Rightarrow af $=$ be
$\Rightarrow(\mathrm{a}, \mathrm{b})=\mathrm{R}(\mathrm{e}, \mathrm{f})$.
Thus, R is transitive.
Thus, R is reflexive, symmetric and transitive.
Hence, R is an equivalence relation.
8. Solution:

For $x \in(0,1]$.

$$
\begin{align*}
(f o g)(x) & =f(g(x))=f([x]) \\
& =\left\{\begin{array}{l}
f(0) ; \text { if } 0<x<1 \\
f(1) ; \text { if } x=1
\end{array}\right. \\
\Rightarrow \quad f(g(x)) & =\left\{\begin{array}{l}
0 ; \text { if } 0<x<1 \\
1 ; \text { if } x=1
\end{array} \ldots\right. \tag{1}
\end{align*}
$$

And (gof) $(x)=g(f(x))=g(1)$
$[\because f(x)=1 \forall x>0]$
$=[1]=1$
\Rightarrow (gof) (x) $=1 \forall \mathrm{x} \in(0,1] \ldots$ (2)

From (1) and (2), (fog) and (gof) do not coincide in (0, 1].

Long Answer:

1. Solution:

We have: $\mathrm{R}=\{(\mathrm{a}, \mathrm{b})\}=\mathrm{a} \leq \mathrm{b}\}$.
Since, $a \leq a \forall a \in R$,
$\therefore(\mathrm{a}, \mathrm{a}) \in \mathrm{R}$,
Thus, R reflexive.
Now, $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and $(\mathrm{b}, \mathrm{c}) \in \mathrm{R}$
$\Rightarrow \mathrm{a} \leq \mathrm{b}$ and $\mathrm{b} \leq \mathrm{c}$
$\Rightarrow \mathrm{a} \leq \mathrm{c}$
$\Rightarrow(\mathrm{a}, \mathrm{c}) \in \mathrm{R}$.
Thus, R is transitive.
But R is not symmetric
$[\because(3,5) \in R$ but $(5,3) \notin R$ as $3 \leq 5$ but $5>3]$
Solution:
Let $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{~N}$.
Now, $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$

$$
\begin{aligned}
& \Rightarrow \quad x_{1}^{2}+x_{1}+1=x^{2}{ }_{2}+x_{2}+1 \\
& \Rightarrow \quad x_{1}^{2}+x_{1}=x^{2}{ }_{2}+x_{2} \\
& \Rightarrow \quad\left(x_{1}^{2}-x_{2}^{2}\right)+\left(x_{1}-x_{2}\right)=0 \\
& \Rightarrow \quad\left(x_{1}-x_{2}\right)+\left(x_{1}+x_{2}+1\right)=0 \\
& \Rightarrow \\
& \Rightarrow \quad x_{1}-x_{2}=0 \quad\left[\because x_{1}+x_{2}+1 \neq 0\right] \\
& \Rightarrow \quad x_{1}=x_{2} .
\end{aligned}
$$

Thus, f is one-one.
Let $y \in N$, then for any x,
$f(x)=y$ if $y=x^{2}+x+1$

$$
\begin{array}{ll}
\Rightarrow & y=\left(x^{2}+x+\frac{1}{4}\right)+\frac{3}{4} \\
\Rightarrow & y=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4} \\
\Rightarrow & x+\frac{1}{2}= \pm \sqrt{y-\frac{3}{4}} \\
\Rightarrow & x= \pm \frac{\sqrt{4 y-3}}{2}-\frac{1}{2} \\
\Rightarrow & x=\frac{ \pm \sqrt{4 y-3}-1}{2} \\
\Rightarrow & x=\frac{\sqrt{4 y-3}-1}{2}
\end{array}
$$

$$
\left[\frac{-\sqrt{4 y-3}-1}{2} \notin N \text { for any value of } y\right]
$$

Now, for $y=\frac{3}{4}, x=-\frac{1}{2} \notin N$.
Thus, f is not onto.
$\Rightarrow f(x)$ is not invertible.
Since, $x>0$, therefore, $\frac{\sqrt{4 y-3}-1}{2}>0$
$\Rightarrow \sqrt{4 y-3}>1$
$\Rightarrow 4 \mathrm{y}-3>1$
$\Rightarrow 4 \mathrm{y}>4$
$\Rightarrow \mathrm{y}>1$.
Redefining, $\mathrm{f}:(0, \infty) \rightarrow(1, \infty)$ makes
$f(x)=x^{2}+x+1$ on onto function.
Thus, $f(x)$ is bijection, hence f is invertible and $f^{-1}:(1, \infty) \rightarrow(1,0)$
$f^{-1}(\mathrm{y})=\frac{\sqrt{4 y-3}-1}{2}$
2. Solution:

We have:
$R=\{(a, b): a, b \in A ;|a-b|$ is divisible by 4$\}$.
(1) Reflexive: For any a $\in A$,
$\therefore(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$.
$|\mathrm{a}-\mathrm{a}|=0$, which is divisible by 4 .
Thus, R is reflexive.
Symmetric:
Let $(a, b) \in R$
$\Rightarrow|\mathrm{a}-\mathrm{b}|$ is divisible by 4
$\Rightarrow|\mathrm{b}-\mathrm{a}|$ is divisible by 4
Thus, R is symmetric.
Transitive: Let $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and $(\mathrm{b}, \mathrm{c}) \in \mathrm{R}$
$\Rightarrow|\mathrm{a}-\mathrm{b}|$ is divisible by 4 and $|\mathrm{b}-\mathrm{c}|$ is divisible by 4
$\Rightarrow|\mathrm{a}-\mathrm{b}|=4 \lambda$
$\Rightarrow \mathrm{a}-\mathrm{b}= \pm 4 \lambda$
and $|\mathrm{b}-\mathrm{c}|=4 \mu$
$\Rightarrow \mathrm{b}-\mathrm{c}= \pm 4 \mu$
Adding (1) and (2),
$(\mathrm{a}-\mathrm{b})+(\mathrm{b}-\mathrm{c})= \pm 4(\lambda+\mu)$
$\Rightarrow \mathrm{a}-\mathrm{c}= \pm 4(\lambda+\mu)$
$\Rightarrow(\mathrm{a}, \mathrm{c}) \in \mathrm{R}$.
Thus, R is transitive.
Now, R is reflexive, symmetric and transitive.
Hence, R is an equivalence relation.
(ii) Let ' x ' be an element of A such that $(x, 1) \in R$
$\Rightarrow|\mathrm{x}-1|$ is divisible by 4
$\Rightarrow \mathrm{x}-1=0,4,8,12, \ldots$
$\Rightarrow \mathrm{x}=1,5,9,13, \ldots$
Hence, the set of all elements of A which are related to 1 is $\{1,5,9\}$.
(iii) Let $(x, 2) \in R$.

Thus $|\mathrm{x}-2|=4 \mathrm{k}$, where $\mathrm{k} \leq 3$.
$\therefore \mathrm{x}=2,6,10$.
Hence, equivalence class $[2]=\{2,6,10\}$.
3. Solution:

Let $y \in R$.
For any $\mathrm{x}, \mathrm{f}(\mathrm{x})=\mathrm{y}$ if $\mathrm{y}=9 \mathrm{x}^{2}+6 \mathrm{x}-5$
$\Rightarrow \mathrm{y}=\left(9 \mathrm{x}^{2}+6 \mathrm{x}+1\right)-6$
$=(3 x+1)^{2}-6$
$\Rightarrow \quad 3 x+1= \pm \sqrt{y+6}$
$\Rightarrow \quad x=\frac{ \pm \sqrt{y+6}-1}{3}$
$\Rightarrow \quad x=\frac{\sqrt{y+6}-1}{3}$

$$
\left[\because \frac{-\sqrt{y+6}-1}{3} \notin[0, \infty) \text { for any value of } y\right]
$$

For $y=-6 \in R, x=-\frac{1}{3} \notin[0, \infty)$.
Thus, $f(x)$ is not onto.
Hence, $f(x)$ is not invertible.

$$
\left.\begin{array}{lrl}
\text { Since, } & x \geq 0, \therefore \frac{\sqrt{y+6}-1}{3} & \geq 0 \\
\Rightarrow & \sqrt{y+6}-1 & \geq 0 \\
\Rightarrow & & \sqrt{y+6}
\end{array}\right)
$$

We redefine,
f: $[0, \infty) \rightarrow[-5, \infty)$,
which makes $f(x)=9 x^{2}+6 x-5$ an onto function.
Now, $x_{1}, x_{2} \in[0, \infty)$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow\left(3 x_{1}+1\right)^{2}=\left(3 x_{2}+1\right)^{2}$
$\Rightarrow\left[\left(3 x_{1}+1\right)+\left(3 x_{2}+1\right)\right]\left[\left(3 x_{1}+1\right)-\left(3 x_{2}+1\right)\right]$
$\Rightarrow\left[3\left(x_{1}+x_{2}\right)+2\right]\left[3\left(x_{1}-x_{2}\right)\right]=0$
$\Rightarrow x_{1}=x_{2}$
$\left[\because 3\left(x_{1}+x_{2}\right)+2>0\right]$
Thus, $f(x)$ is one-one.
$\therefore f(x)$ is bijective, hence f is invertible
and $f^{-1}:[-5, \infty) \rightarrow[0, \infty)$
$\mathrm{f}^{-1}(\mathrm{y})=\frac{\sqrt{y+6}-1}{3}$

Assertion and Reason Answers-

1. (a) Both A and R are true and R is the correct explanation of A.
2. (a) Both A and R are true and R is the correct explanation of A.

Case Study Answers-

1. Answer :

(i) (a) R-\{2\}

Solution:

For $\mathrm{f}(\mathrm{x})$ to be defined $\mathrm{x}-2$; $\neq 0$ i.e., $\mathrm{x} ; \neq 2$.
\therefore Domain of $\mathrm{f}=\mathrm{R}-\{2\}$
(ii) (b) R $-\{2\}$

Solution:

Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$, then $\mathrm{y}=\frac{\mathrm{x}-1}{\mathrm{x}-2}$
$\Rightarrow \mathrm{xy}-2 \mathrm{y}=\mathrm{x}-1 \Rightarrow \mathrm{xy}-\mathrm{x}=2 \mathrm{y}$ -
$\Rightarrow \mathrm{x}=\frac{2 \mathrm{y}-1}{\mathrm{y}-1}$
Since, $x \in \in$ - $\{2\}$, therefore $y \neq 1$
Hence, range of $f=R-\{1\}$
(d) $\frac{x}{x-2}$

Solution:

We have, $g(x)=2 f(x)-1$
$=2\left(\frac{x-1}{x-2}\right)-1=\frac{2 x-2-x+2}{x-2}=\frac{x}{x-2}$
(iv) (a) One-one

Solution:

We have, $g(x)=\frac{x}{x-2}$
Let $g\left(x_{1}\right)=g\left(x_{2}\right) \Rightarrow \frac{x_{1}}{x_{1}-2}=\frac{x_{2}}{x_{2}-2}$
$\Rightarrow \mathrm{x}_{1} \mathrm{X}_{2}-2 \mathrm{x}_{1}=\mathrm{x}_{1} \mathrm{X}_{2}-2 \mathrm{x}_{2} \Rightarrow 2 \mathrm{x}_{1}=2 \mathrm{x}_{2} \Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$
Thus, $\mathrm{g}\left(\mathrm{x}_{1}\right)=\mathrm{g}\left(\mathrm{x}_{2}\right) \Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$
Hence, $g(x)$ is one-one.
(v)(c) $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right) \Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$

2. Answer :

(i) (a) Reflexive

Solution:

Clearly, $(1,1),(2,2),(3,3), \in R$. So, R is reflexive on A.
Since, $(1,2) \in R$ but $(2,1) \notin R$. So, R is not symmetric on A.
Since, $(2,3), \in R$ and $(3,1) \in R$ but $(2,1) \notin R$. So, R is not transitive on A.
(ii)
(b) Symmetric

Solution:

Since, $(1,1),(2,2)$ and $(3,3)$ are not in R. So, R is not reflexive on A.
Now, $(1,2) \in R \Rightarrow(2,1) \in R$ and $(1,3) \in R \Rightarrow(3,1) \in R$. So, R is symmetric,
Clearly, $(1,2) \in R$ and $(2,1) \in R$ but $(1,1) \notin R$. So, R is not transitive on A.
(iii) (c) Transitive

Solution:

We have, $R=\{(x, y): y=x+5$ and $x<4\}$, where $x, y \in N$.
$\therefore \mathrm{R}=\{(1,6),(2,7),(3,8)\}$
Clearly, $(1,1),(2,2)$ etc. are not in R. So, R is not reflexive.
Since, $(1,6) \in R$ but $(6,1) \notin R$. So, R is not symmetric.
Since, $(1,6) \in R$ and there is no order pair in R which has 6 as the first element.
Same is the case for $(2,7)$ and $(3,8)$. So, R is transitive.
(iv) (d) Equivalence

Solution:

We have, $\mathrm{R}=\{(\mathrm{x}, \mathrm{y}): 3 \mathrm{x}-\mathrm{y}=0\}$, where $\mathrm{x}, \mathrm{y} \in \mathrm{A}=\{1,2, \ldots . . ., 14\}$.
$\therefore \mathrm{R}=\{(1,3),(2,6),(3,9),(4,12)\}$
Clearly, $(1,1) \notin R$. So, R is not reflexive on A.
Since, $(1,3) \in R$ but $(3,1) \notin R$. So, R is not symmetric on A.

Since, $(1,3) \in \operatorname{Rand}(3,9) \in R$ but $(1,9) \notin R$. So, R is not transitive on A.
(v)(d) Equi0076alence

Solution:

Clearly, $(1,1),(2,2),(3,3) \in R$. So, R is reflexive on A.
We find that the ordered pairs obtained by interchanging the components of ordered pairs in R are also in R . So, R is symmetric on A . For $1,2,3 \in \mathrm{~A}$ such that $(1,2)$ and $(2,3)$ are in R implies that $(1,3)$ is also, in R. So, R is transitive on A. Thus, R is an equivalence relation.

